
OPEN ACCESS

ll
Review

A comprehensive survey
on smart contract construction
and execution: paradigms, tools, and systems
Bin Hu,1 Zongyang Zhang,1,* Jianwei Liu,1,* Yizhong Liu,1 Jiayuan Yin,1 Rongxing Lu,2 and Xiaodong Lin3
1School of Cyber Science and Technology, Beihang University, Beijing 100191, China
2Faculty of Computer Science, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
3School of Computer Science, University of Guelph, Guelph, ON N1G 2W1, Canada
*Correspondence: zongyangzhang@buaa.edu.cn (Z.Z.), liujianwei@buaa.edu.cn (J.L.)
https://doi.org/10.1016/j.patter.2020.100179
THE BIGGER PICTURE Smart contracts are one of the most promising and appealing notions in blockchain
technology. We provide a comprehensive review of state-of-the-art smart contract construction and execu-
tion schemes. We classify three major categories: (1) design paradigms that give examples and patterns on
contract construction, (2) design tools that facilitate the development of secure smart contracts, and (3) ex-
tensions and alternatives that improve privacy or efficiency. We found that frequently occurred vulnerabil-
ities, incomplete paradigms, inefficient analysis tools, low processing rate, limited contract complexity,
and the lack of privacy are the main challenges that hinder the adoption of smart contracts. We identify
several future research directions, including fair off-chain networks, practical implementations, scalable
and automatic analysis tools, and private contracts with practical compilers.
SUMMARY

Smart contracts are regarded as one of the most promising and appealing notions in blockchain technology.
Their self-enforcing and event-driven features make some online activities possible without a trusted third
party. Nevertheless, problems such asmiscellaneous attacks, privacy leakage, and lowprocessing rates pre-
vent them from being widely applied. Various schemes and tools have been proposed to facilitate the con-
struction and execution of secure smart contracts. However, a comprehensive survey for these proposals is
absent, hindering new researchers and developers from a quick start. This paper surveys the literature and
online resources on smart contract construction and execution over the period 2008–2020. We divide the
studies into three categories: (1) design paradigms that give examples and patterns on contract construction,
(2) design tools that facilitate the development of secure smart contracts, and (3) extensions and alternatives
that improve the privacy or efficiency of the system. We start by grouping the relevant construction schemes
into the first two categories. We then review the executionmechanisms in the last category and further divide
the state-of-the-art solutions into three classes: private contracts with extra tools, off-chain channels, and
extensions on core functionalities. Finally, we summarize several challenges and identify future research di-
rections toward developing secure, privacy-preserving, and efficient smart contracts.
1. INTRODUCTION

The advent of Bitcoin1 in 2008 marks the birth of cryptocurren-

cies, which are maintained without trusted third parties (TTP).

Since then, numerous cryptocurrencies have emerged. Unlike

traditional fiat currencies issued by governments, cryptocurren-

cies circulate in specific computer programs through peer-to-

peer (P2P) technology, whereby no leader or dominant node is

responsible for message transmission. Cryptocurrencies are

equipped with numerous cryptographic and game-theoretic

schemes that ensure their safe circulation on the Internet.
This is an open access article under the CC BY-N
The core technology that enables the cryptocurrencies is

blockchain, which ensures data consistency among distributed

nodes in a P2P network without mutual trust. Later in 2014,

Ethereum2,3 extended Bitcoin and introduced the smart con-

tract4 into the blockchain, which greatly enriches the application

scenarios of blockchain. Ethereum thus becomes one of the

most promoting motivations of blockchain technology.

After the birth of Ethereum, applications of smart contracts

have gradually become prevalent, and many other platforms

have been derived. In 2016, Corda,5 a distributed ledger platform

for the financial-service industry, was proposed to improve the
Patterns 2, February 12, 2021 ª 2020 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:zongyangzhang@buaa.edu.cn
mailto:liujianwei@buaa.edu.cn
https://doi.org/10.1016/j.patter.2020.100179
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2020.100179&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

ll
OPEN ACCESS Review
transaction-processing rate. For the privacy concerns on smart

contracts, Quorum6 has introduced private state trie and other

technical methods into Ethereum to support the execution of pri-

vate contracts. Besides, the Hyperledger Fabric7 system led by

IBM facilitates the application of smart contracts. It allows com-

panies or consortia to run it collaboratively to improve the trans-

action-processing rate while keeping the data consistent and

non-malleable. Since 2015, smart contracts in Hyperledger Fab-

ric have been widely used in the supply chain, education, busi-

ness, and other domains8 to support reliable data communica-

tion and value exchanges by maintaining data consistency and

verifiability among various departments and organizations.

From the academic perspective, researchers are mostly dedi-

cated to the improvements on public blockchains where

everyone could join, especially Bitcoin and Ethereum, since pub-

lic blockchains have received themost attention by users and re-

searchers, and many systems are derived from Bitcoin and

Ethereum (e.g., Corda5 and Quorum6). Moreover, problems

that occur on these platforms are usually universal to other

derived systems. Developers might migrate the research results

to other platforms with slight modifications.

One of the most significant issues of blockchain and smart

contract technology is that all transaction details are public.

This might cause the leakage of privacy despite the pseudonym

mechanism by identifying and clustering users with pseudo-

nyms.9,10 Moreover, since transactions are executed and vali-

dated by all participating nodes in a duplicated way, the trans-

action rate (or throughput) is quite limited in the blockchain

system. Both the privacy and efficiency problems hinder

many applications from being implemented as smart contracts

and make smart contracts only applicable in a small number

of fields.

There are also concerns that smart contracts are vulnerable to

hacker attacks. One infamous example is the attack against the

crowdfunding project Decentralized Autonomous Organization

(DAO) in 2016, which will be introduced in more detail in Section

5.2.1. DAO relies on a smart contract on Ethereum, through

which developers collect crowdfunding for their blockchain-

based applications, and investors are rewarded in return. How-

ever, there is a vulnerability in the contract code,11,12 which led

to an economic loss worth about 60 million dollars at that time.

This so-called re-entrancy attack changes investors’ attitudes

toward smart contracts, which hinders the development of smart

contracts and blockchain.

The DAO event is just one of the most typical attacks against

smart contracts. Since smart contracts usually involve financial

transactions, any attack may cause a severe economic loss.

Consequently, compared with traditional programming, the

design of smart contracts has higher security requirements,

which makes it more difficult for ordinary users to write secure

smart contracts by themselves, further inhibiting the popularity

of smart contracts in other industries.

To sum up, security,12,13 privacy,13 and efficiency14 are the

main obstacles to smart contracts’ universal adoption. There

have been various schemes to overcome such barriers and pro-

mote the development of smart contracts. However, the quick

evolution of the blockchain and smart contracts leaves a gap be-

tween the research and implementation, whichmay confuse new

incomers and prevent them from getting involved. In this paper,
2 Patterns 2, February 12, 2021
weconduct a systematic review of the schemes on contract con-

struction and execution, aiming at providing a comprehensive

review of the smart contract technology. In the following, we

specify our research questions that will be addressed in

this paper.

RQ 1.What are the state-of-the-art design paradigms, design

tools, and alternative systems to develop or execute smart

contracts securely?

RQ 2. What are the current challenges for the efficient devel-

opment of secure smart contracts, and for these contracts to

be adopted in various application scenarios?

RQ 3. What are the potential research directions that may

overcome the challenges and limitations mentioned in RQ 2?

1.1. Methodology
We follow the systematic review methodology proposed by

Kitchenham.15 With the above research questions in mind, to

provide a systematic survey on smart contract construction

and execution, we first collect the most relevant literature

through searches in Google Scholar, ACM, IEEE, Web of Sci-

ence, Springer, IACR ePrint, and arXiv. These databases are

the most prevalent repositories for papers related to blockchain

and smart contracts.

As our research focuses on the construction and execution

schemes of smart contracts, we only include the papers that

discuss the specific design paradigms, design tools, or execu-

tion schemes from a technical point of view. We do not consider

the problems related to blockchain but not smart contracts, such

as sharding, side-chains, and child-chains. The high-level de-

scriptions of combining smart contracts with other technologies,

such as artificial intelligence, cloud computing, or the Internet of

Things, are also not included.

According to the criteria described above, we use the search

keywords ‘‘smart contract,’’ ‘‘contract construction,’’ ‘‘contract

design,’’ and ‘‘contract execution’’ on our selected databases.

The search was first conducted in February 2020. We collect

the first 20 pages of the search results. We then manually check

their relevance to our research questions through the title and

abstract: whether they are focused on the design paradigms,

design tools, or alternative smart contract execution systems.

Such a search is conducted every three weeks to keep track of

the latest studies. We also perform a manual selection by

searching the proceedings of famous conferences and work-

shops, including ACM CCS, USENIX Security, NDSS, IEEE

S&P, CRYPTO, ASIACRYPT, EUROCRYPT, and FC, as these

conferences usually reserve sections especially for studies on

blockchain and smart contracts. We further refer to the refer-

ences of collected papers and the citation API provided by web-

sites such as Google Scholar, IEEE Xplore, and ACM Digital Li-

brary. Until August 2020, we have collected 159 papers (or

online resources) directly relevant to our research and 12 related

surveys, as will be discussed later.

1.2. Our contributions
We conduct a comprehensive survey on smart contract con-

struction and execution from the perspectives of paradigms,

tools, and systems over the period 2008–2020. Although the first

ll
OPEN ACCESSReview
published paper relevant to smart contracts dates back to 2013,

there are still several online resources such as wiki pages and fo-

rums discussing smart contracts during the period 2008–2013.

For example, the famous forum Bitcointalk16 was established

in 2009, and the earliest Bitcoin wiki page17 was created in

2010. We believe that our work will provide insights to re-

searchers and developers who are new to smart contracts and

offer a holistic technical perspective upon contract construction

and execution schemes. Our main contributions are as follows.

(1) We provide the essential background knowledge of

blockchain and smart contracts, especially the contract

executionmechanisms, to provide new incomers an over-

all impression of the related concepts and help experi-

enced readers have better comprehension. Besides, we

give several necessary definitions to form a systematiza-

tion of knowledge.

(2) We provide a taxonomy of the contract construction and

executionschemes,according to the159papersandonline

resourceswehavecollected.Wedivideexistingblockchain

systems that support smart contracts into script-basedand

Turing-complete blockchains, with Bitcoin and Ethereum

as representatives, respectively. We then discuss the

designparadigmsand toolson these two typesofplatforms

and make a further categorization on each topic.

(3) We investigate and categorize the extensions and alterna-

tive systems for contract execution, aiming tomitigate the

problems and limitations on the existing mainstream con-

tract execution mechanisms.

(4) We discuss the strengths and weaknesses of the state-of-

the-art solutions that address the privacy and efficiency is-

sues in both contract construction and execution aspects,

and point out promising future research directions during

our specification of each topic and at the end of this paper.
1.3. Organization
The remainder of this paper is as follows. Section 2 introduces the

background, preliminaries, and related work. Section 3 provides

the systematizationmethodologyof thispaper.Section4andSec-

tion 5 describe smart contract construction schemes in script-

basedandTuring-completeblockchains, takingBitcoin andEther-

eum as representatives, respectively. Section 6 discusses various

solutions and extensions to improve the privacy and efficiency of

contract execution mechanisms. Section 7 outlines our observa-

tions on the research questions, and summarizes the challenges

and future research directions on the construction and execution

of smart contracts. Finally, Section 8 provides a conclusion.

2. BACKGROUND, NOTATIONS, AND RELATED WORK

In this section, we first provide the essential background in Sec-

tion 2.1, specify the notations in Section 2.2, and finally present

the related work in Section 2.3. We also provide several essential

definitions in the Definitions section.

2.1. Background
The background information for this study is given in the

following: we first give a brief impression about blockchain tech-
nology in Section 2.1.1 and then explain the concept of smart

contracts in mainstream blockchains in Section 2.1.2.

2.1.1. Blockchain

Informally, a blockchain is a sequence of blocks linked with hash

values. Transactions that deliver messages among users and

interact with the blockchain are stored in the block body, and

digest information and other identifiers are recorded in the

block header. A blockchain is maintained by the nodes partici-

pating in the network, and the data consistency among the no-

des is ensured according to some predetermined rules called

consensus.

We take the Bitcoin blockchain as an example and illustrate its

structure in Figure 1. It is formed by linking multiple blocks in

sequence with their hash values. Each block consists of a block

header and a block body. Specifically, a block header includes a

hash value of the previous block HPrev, a version number v of the

current consensus, a current mining difficulty parameter d, a

timestamp t, a Merkle root of transactions Hroot, and a random

nonce nr . A block body includes transactions Txj˛N� that are

used to calculate Hroot. Figure 1 shows that every two adjacent

hash values are combined to calculate the hash in the upper

layer. If there is a single node left at the end, it will be duplicated

and combined with itself, as shown in the path of

H5/H55/H5555. Note that the contents in the dotted box in

Figure 1 are only used to illustrate the calculation of Hroot and

are not included in the block.

In the Bitcoin blockchain, the verification of new blocks is

simplified due to the separation of block headers and bodies.

Cryptographic schemes (such as hash function and Merkle

tree) are adopted to guarantee the tamper resistance and data

consistency. Each node can individually calculate the final state

by executing all transactions in order from the genesis block (the

initial block of the blockchain). In this way, a central trusted third

party is eliminated from the system, and any individual party

cannot interrupt the operations in the blockchain. For more tech-

nical details about Bitcoin blockchain, readers may refer to

Tschorsch and Scheuermann.18

We remark that the blockchain structure discussed above is

widely adopted by other derived systems, e.g., Ethereum,

Corda, and Quorum, and the introduction of these blockchains

is omitted here. The blockchain serves as an infrastructure for

data communication and value exchanges in their particular

application scenarios.

2.1.2. Smart contract

The concept of smart contracts was first proposed by Szabo 4 in

1997, referred to as amulti-party protocol that could be automat-

ically enforced without a trusted third party. It did not receive

enough attention since it was impractical at that time. Several

years later, with the birth and development of blockchain, smart

contracts were brought back into practice.

Smart contracts are usually defined as event-driven computer

programs executed and enforced by all participants in a P2P

network in the blockchain context. In each smart contract, there

are public interfaces that handle the relevant events. These inter-

faces are invoked by the transactions with proper payload data,

and all valid transactions are recorded on the blockchain. Formal

definitions of smart contracts and other related concepts are

provided in the Definitions section, which serves as a glossary

for readers new to this area.
Patterns 2, February 12, 2021 3

Figure 1. Data structure of the Bitcoin
blockchain

ll
OPEN ACCESS Review
Bitcoin supports a set of scripts that enable the auto-enforce-

ment of some special financial affairs other than direct electronic

cash exchange. This procedure can be considered as the proto-

type of smart contracts. In the early years, some researchers im-

plemented zero-knowledge contingent payment19 to achieve a

fair exchange of electronic goods. On this basis, more and

more smart contracts20 were developed and implemented.

However, the scripts in Bitcoin are only applicable in limited

scenarios. The first reason for this is that Bitcoin intentionally ex-

cludes the opcode for loops to avoid potential non-stop opera-

tions that lead to the deadlock of the workflow. Although finite

loops can be expressed as several repeated operations, the total

length of a script is limited up to 520 bytes, with each opcode

occupying 4–5 bytes.21 Moreover, the script language is relatively

difficult to learn for young programmers because of its Forth-like,

‘‘old-style’’ appearance. The potential security issues (e.g.,

miscellaneous attacks) make this situation even worse, requiring

developers to prevent possible attacks as much as possible.

Though it is difficult to develop smart contracts in Bitcoin,

several decentralized applications (so-called DApps in recent

years) are launched utilizing the scripts. The most popular ones

are data storage (evidence keeping), voting, gambling, and on-

line poker games (see Section 4.1). Most of these applications

consist of several lines of scripts, and they fully utilize the

inherent cryptocurrency to realize automatic value transfer

without a TTP. These applications’ logic is relatively simpler

compared with that in Ethereum, as described below.

Ethereum introduces a new virtual machine structure and sup-

ports Turing-complete programming languages, which greatly

enrich smart contracts’ functionalities. Specifically, Ethereum

supports the execution of arbitrary deterministic computer pro-
4 Patterns 2, February 12, 2021
grams in theory. The underlying Ethereum

Virtual Machine (EVM) recognizes a low-

level language called EVM bytecode. To

reduce the learning cost and improve

development efficiency, several high-level

programming languages have been pro-

posed, e.g., Solidity22 and Serpent,23

whose grammar is similar to mainstream

programming languages. Contracts writ-

ten in these high-level languages are

compiled into EVM bytecode with appro-

priate compilers. These specially de-

signed structures and languages greatly

promote the development of smart con-

tracts. Numerous DApps with complex

logic have been proposed in Ethereum

and are still thriving nowadays. Typical ap-

plications include lottery, loan, auction,

and decentralized finance (see Section

5.1). With high-level Turing-complete lan-

guages, these applications can be devel-

oped and understood by ordinary users

more easily.
Figure 2 shows the workflow of a blockchain that supports

smart contracts, where the brown arrows represent the pro-

cesses of deploying a smart contract through the creation trans-

action Txcreate. In the development stage, users may refer to

design paradigms and use auxiliary tools to get a prototype.

Analysis tools are then implemented to confirm the contract’s

security and correctness (Definition 13, 14). The blue and red ar-

rows refer to the call from smart contracts and users, respec-

tively. After receiving Tx1;call and Tx2;call, the miners (i.e., execu-

tors of these transactions) verify and package the transactions

into the latest block, i.e., Blocki+2, following the execution mech-

anism. After the block is appended to the blockchain, the World

State, which contains all the states, is updated accordingly.

From another point of view, the execution mechanism among

different platforms varies. In the following, we give a brief intro-

duction of the execution mechanisms in Section 2.1.2.1 and

Section 2.1.2.2, respectively, taking Bitcoin and Ethereum as

representatives.

2.1.2.1. Contract execution in Bitcoin. Smart contracts in Bit-

coin refer to the transactions setting script hashes as output ad-

dresses (Pay to Script Hash, P2SH), which encode the hashes of

scripts into Bitcoin UTXOs (Definition 10). P2SH transactions are

the basis for multi-signature (MultiSig)24 transactions, Lightning

Network,25 and other techniques in the Bitcoin ecosystem.

These techniques play a significant role in data communication

by allowing messages and instructions delivered and executed

consistently through a network without mutual trust.

Figure 3 shows a simplified payment process in Bitcoin, where

the time field is omitted. When dealing with a transaction that

spends UTXOs from a P2SH transaction Tx0, the miners first

verify the sender’s signature. They then check whether the script

Figure 2. Workflow of the blockchain
supporting smart contracts

ll
OPEN ACCESSReview
code in the transaction payload matches the corresponding

script hash Hscript. Finally, they check whether the other payload

data pdata makes the script evaluated to be true. If so, the signed

redeem transaction Tx1 is valid.

In Bitcoin, it takes approximately 10 min to append a new

block to the blockchain. Moreover, it is recommended to wait

for at least a sequence of six blocks to make sure that the trans-

actions indeed take effect and cannot be erased or forked, with

an overwhelming probability. This introduces a huge delay in the

transaction confirmation, which further limits the implementation

of Bitcoin smart contracts.

Moreover, since the information on the Bitcoin blockchain is

publicly available, the full scripts are exposed to the entire

network. Even though Bitcoin is equipped with a pseudonym

mechanism, such privacy leakage is still inevitable. Curious

readers may refer to the work of Conti et al.13 for a more detailed

survey on privacy issues in Bitcoin.

2.1.2.2. Contract execution in Ethereum. The Turing-complete

programming languages in Ethereum significantly extend the

application scenario of smart contracts. Theoretically, smart

contracts in Ethereum can realize any deterministic program.

These contracts are executed by the EVM, whose formal defini-

tion and execution mechanism are elaborated in Ethereum Yel-

low Paper.3

Ethereum adopts the account model (Definition 11), whereby

an account of a smart contract has the same status as that of

a user. In other words, a contract account has the same ability

to send transactions and trigger or create contracts as that of

a personal account.

Transactions are handled by miners who run the EVM. After a

transaction is included in the blockchain, the balance and other

variables are updated according to the contract rules.

To prevent potential Denial of Service (DoS) attacks (e.g., non-

stop execution caused by an infinite loop), Ethereum introduces

the gasmechanism. Namely, each operation consumes a certain

amount of gas, and the upper bound of gas consumption is set

and paid in advance in the transaction. Suppose the execution

of a contract function does not terminate before the gas is ex-
hausted. In that case, the contract will be

reverted to the initial states before the trig-

gering of this function, and the miners will

charge all the consumed gas as execution

fees. However, this limits the complexity of

smart contracts.

In addition, similar to Bitcoin, smart con-

tracts in Ethereum also suffer from privacy

leakage. Several schemes have been pro-

posed to handle such privacy issues and

will be discussed later in this review.

2.2. Notations
As mentioned in Section 1, the security

problems on smart contracts should be

carefully settled. Relevant solutions for
contract construction and execution usually come with a formal

security proof, which might involve mathematical models or

cryptographic primitives. To present these schemes in a uniform

style, we make an effort to unify the notations in our work, as

shown in the following.

Sets are denoted with upper-case calligraphic letters, e.g., T
represents the set of valid transactions for a contract.

For most functions, F is used, along with a subscript denoting

the particular usage of this function, e.g., Fneg, the negligible

function with certain security parameter. Some other functions

or primitives may be denoted with Greek letters, e.g., 4 for the

primitive that evaluates the witness u.

Tuples are denotedwith upper-case letters, e.g.,U denotes an

unspent transaction output (UTXO, Definition 10). A dot opera-

tion is used to refer to the component inside a tuple, e.g.,U:v de-

notes the value of a UTXO. We use Tx to represent a transaction,

and Tx:in; Tx:out; Tx:id, and Tx:pld denote the transaction’s

input, output, identifier, and payload data, respectively.

Arbitrary-length sequences are denoted as sans serif lower-

case abbreviations, e.g., buf, the stack of buffers. Square

brackets are used to index individual components, e.g., buf[0],

the first item on the buffer stack.

Scalars and variables are denoted with a lower-case letter,

e.g., n is often used to represent the number of participants,

and i; j; k are often used as indexes to refer to the members

in a set. Moreover, those with special meaning might be Greek,

e.g., s denotes a digital signature.

For the names of proposed schemes, we adopt the original

text styles in the literature, e.g., OYENTE and Hawk.

Besides, some special representations are used for particular

meanings. Hash values are denoted with H, whose subscripts

may be strings with special meanings, e.g., Hroot, the root hash

of a Merkle tree. Time is denoted with t. We use ₿x to represent

x bitcoins. Smart contracts are usually denoted with C, while for

those with particular meanings, the typewriter format is used,

e.g., SimpleDAO, the example contract used to describe a

DAO attack. Greek letters such as b and g are used to denote

payment channels and state channels. Protocols are denoted
Patterns 2, February 12, 2021 5

Figure 3. P2SH transactions between Alice
and Bob with the time field omitted. A
redeem transaction requires specific
payload data from Bob

ll
OPEN ACCESS Review
with p. The letter A is used to denote an adversary. Participants

in a protocol or contract are denoted as P, which often comes

with subscripts such as numbers (e.g., P1, the first participant)

and letters (e.g., Ps, the sender). Address, usually a string in

the context of blockchain, is denoted with a, and with subscripts

indicating the usage of this address, e.g., amul is the multi-sig

address in the Bitcoin context. Ideal functionalities are denoted

with F�, and the message headers in these functionalities are

represented with the small capital letters, e.g., DEPOSIT.

As for operations, we use s)0 to denote the operation of as-

signing value 0 to s, and s)$f0;1g128 to denote that s is uni-

formly picked at random from the set f0; 1g128. The operation

/ is used to denote the concatenation of several nodes that

forms a path, as already shown in Figure 1, the path H5/

H55/H5555. CP;VD is used to denote the interaction of two Turing

machinesP and V. The concatenation of strings is denotedwith jj
and the XOR of same-length binary elements with 5.

Most notations are utilized during the specification of relative

schemes and functionalities in Section 4.1, Section 6.2, and

the Definitions section, especially when depicting the procedure

of the schemes.

2.3. Related work
Smart contracts are an essential aspect of the blockchain. Its

execution characteristics, efficiency, and security are directly

related to the acceptance of this emerging technology. Prior to

our work, there have been several surveys on the features of con-

tract platforms, properties of the contracts, and related analysis

tools, as shown in Figure 4.

2.3.1. Features of platforms

Seijas et al.26 discuss the languages adopted by the blockchain

systems such as Bitcoin, Nxt,27 and Ethereum, and list the de-

fects of these languages. Furthermore, they point out some

promising techniques that may help expand contracts’ function-

ality and enforce their security, such as zero-knowledge proofs

(ZKP; Definition 16) and static analysis.

Bartoletti and Pompianu28 compare six smart contract plat-

forms: Bitcoin, Ethereum, Counterparty,29 Stellar,30 Monax,31

and Lisk.32 Junis et al.33 briefly present a basic concept of block-

chain and smart contracts. The existing studies only briefly intro-

duce the features of smart contract platforms, and a thorough

and comprehensive survey is absent.

2.3.2. Properties of contracts

We consider the security, privacy, and performance aspects of

smart contracts. There are seven surveys discussing the similar

concepts, but not as systematic as ours.
6 Patterns 2, February 12, 2021
Alharby and van Moorsel34 investigate

24 papers related to smart contracts.

They point out that most research focuses

on the problems for DApps and the corre-

sponding solutions. These issues are

divided into contract construction, secure

execution, privacy, and performance.
From the practical perspective, Atzei et al.12 summarize the vul-

nerabilities of smart contracts in Ethereum. They categorize four

weaknesses in Ethereum to facilitate future development or

research on smart contracts (for more details see Section 5.2).

Dika35 analyzes smart contracts in Ethereum from a higher point

of view, and categorizes the weaknesses into three levels: block-

chain, virtual machine (EVM), and programming language (Solid-

ity). Macrinici et al.36 collect 64 papers on the issues related to

the smart contract applications. They summarize 16 subprob-

lems into three categories: problems on blockchain mechanism,

contract programs, and virtual machine. However, they only list

the problems but fail to elaborate on the solutions.

Regarding the application scenarios of smart contracts, Barto-

letti and Pompianu28 analyze the smart contracts on Bitcoin and

Ethereum up to 2017, and divide the application scenarios into

financial, notary, game, wallet, library, and others. They focus

on the quantitative statistics in the application layer, aiming to

give an impression on the usage of smart contracts. Ayman

et al.37 analyze the programming problems according to the

number of questions in the Stackoverflow forum. They conclude

the trend in the development of smart contracts based on the

statistical results.

2.3.3. Analysis tools

Harz and Knottenbelt38 analyze the languages and security tools

designed for smart contracts in 2018, giving a classification and

brief introduction. Angelo and Salzer39 investigate 27 tools for

Ethereum contracts from the aspects of open source, maturity,

adopted methods, security issues, and others. At the same

time, 53 papers related to smart contract security are summa-

rized by Liu and Liu,40 and are classified from security and cor-

rectness aspects. Compared with these two studies, our work

covers more up-to-date analysis tools. We describe the smart

contract construction schemes, tools, and execution mecha-

nisms, forming a more systematic knowledge of contract con-

struction and execution.

The latest studies of Ante41 and Almakhour et al.42 survey the

contract analysis tools almost simultaneously. Ante41 analyzes

the smart contract-related literature and provides several statis-

tical and quantitative results, such as the citation statistics, dis-

tribution of keywords, and the most concerned smart contract

platforms. Almakhour et al.42 classify the analysis tools into cor-

rectness verification tools and vulnerability analysis tools for

smart contracts, and provide a detailed description of each tool.

Differently, we start from a higher-level perspective and

discuss the topics related to the contract construction and

execution schemes with more details. We make a distinct

Figure 4. Related work on construction and
execution mechanisms of smart contracts

ll
OPEN ACCESSReview
taxonomy of these tools, aiming at providing a road map for the

researchers and developers interested in smart contracts.

3. SYSTEMATIZATION METHODOLOGY

In this review, we divide the schemes related to smart contracts

into the construction-related and execution-related. As shown in

Figure 2, the construction and execution schemes work sepa-

rately. The construction-related schemes focus on the design

paradigms and auxiliary frameworks within the current architec-

ture to facilitate the secure and flexible development of DApps.

The execution-related schemes involve the implementation stra-

tegies of smart contracts or modifications of the underlying

execution mechanism to improve smart contracts’ performance

and make the contracts applicable to more demanding applica-

tion scenarios.

We discuss the above two categories in the following. Note

that the notion of constructing and designing smart contracts

are used synonymously throughout this paper. We discuss the

smart contracts in the blockchain context and sometimes use

the word contract for short.

3.1. Construction of smart contracts
As mentioned in Section 1 and Section 2, smart contracts are

crucial and promising building blocks for reliable data communi-

cation, as they facilitate the information and value exchanges in a

verifiable way. However, due to the demanding requirements on

smart contracts, efficiently designing secure and privacy-preser-

ving smart contracts to reach the desired performance remains

challenging.

Forms of smart contracts are various, depending on the plat-

forms on which they are running. Therefore, design schemes of

smart contracts also rely on the platforms, especially the lan-

guage they support. Smart contracts written in scripts aremostly

used to describe financial transactions, while smart contracts

written in Turing-complete languages could theoretically

describe any deterministic protocol as a computer program.

We categorize the existing blockchain platforms into two

types:26,34 script-based blockchains represented by Bitcoin

and Turing-complete blockchains represented by Ethereum.

The former supports only limited expressions of operations

(especially no loops), and the latter supports arbitrary functions

with Turing-complete programming languages.

Since the smart contracts on these two kinds of platforms have

significant differences in the form and execution mechanism, the

construction schemes are also quite different. Therefore, we will

discuss the smart contract construction schemes separately.
Additionally, the schemes in each cate-

gory are further divided into two parts,

design paradigms28,37 and design

tools,35,36,38–42 where the design patterns

describe some common and useful para-

digms, including paradigms for specific ap-

plications and best practices for general
purpose, and the design tools refer to the tools available in the

process of developing smart contracts. Some tools help devel-

opers confirm contracts’ security to avoid economic losses

caused by potential vulnerabilities or bugs. They are called anal-

ysis tools and usually take effect after the contract is almost

completed. Other tools work during the construction process of

contracts, improving the efficiency of development or reducing

security issues, and are called auxiliary tools in this review.

3.2. Execution of smart contracts
Besides the expressivity of programming languages, the afore-

mentioned two kinds of smart contract platforms also vary in

the execution mechanisms. However, from another point of

view the mainstream platforms in both categories suffer from

several common problems in transaction delay, contract

complexity, privacy leakage, and others.

Numerous schemes for contract executions28,33,36,38 are

proposed to solve these problems, aimed at making smart con-

tracts applicable to miscellaneous implementations. Here we

divide them into three classes: (1) private contracts with extra

tools, (2) off-chain channels, and (3) extensions on core func-

tionalities.

In the first two categories, schemes usually follow the original

rules, and schemes in the last category often introduce new

functionalities or properties by modifying the underlying execu-

tion mechanisms. Solutions in the first category often introduce

useful cryptographic protocols or hardware to protect user pri-

vacy during the executions of smart contracts. We remark that

schemes in the second category are quite prevalent since they

do not require extra tools or modifications of the underlying

mechanism. Their core idea is to migrate the execution off-

chain and only use blockchain for final state settlement or

dispute handling, and we call them off-chain channels.

Schemes in the last category are designed to add the function-

ality that the original platforms do not support. Their implemen-

tation requires a fork of the existing system, or they even launch

a new one instead.

We classify the schemes related to smart contracts in the liter-

ature in Table 1. In the ‘‘Theory’’ column, the symbolsC,H, and

B represent that the work has both complete description and

formal security proof, has description but no proof, and has

neither description nor proof, respectively. Similarly, in the

‘‘Realization’’ column, the symbols of C, H, and B denote

that the work has open-sourced implementation, has implemen-

tation but is not open-sourced, and has no implementation. The

word open-sourced here means the source code is released on-

line and available for all users, which is of great significance for
Patterns 2, February 12, 2021 7

Table 1. Summary of the construction and executing schemes of smart contracts

Class Refs.a Year Keywords Theoryb Realizationc

Designing contracts

with scripts

Design patterns 20 2012 P2SH transactions &

common contracts

H C

43–45 2014–2018 OP_RETURN opcode HBH CCC
46–48 2014–2017 contracts for lottery CCC CBC
49 2015 contracts for online poker C B
50 2014 general fair multi-party

protocols

C B

51–53 2016 secure multi-party

computation on public

blockchains

CCC CBB

54–56 2015–2018 probabilistic payment

system

CCC HBB

57–59 2016–2019 scriptless contract CHC CBH

Design tools 60–64 2014–2018 security models HCHHH CBCHC
62–69 2017–2019 languages HHHHCCHH CHCCHCCC

Designing smart

contracts with

Turing-complete

languages

Design patterns 48,70 2017 contracts for lottery CC CC
71,72 2018–2019 lending contracts CH CH
73–77 2016–2020 contracts for

e-government

HHHHH BBBBC

78,79 2018 private auction protocol CH CC
80–84 2017–2019 off-chain computation

and storage

HHHHH BBCHH

22,85,86 2016–2020 best practices on

writing smart contracts

HHH CCC

28,87,88 2016–2018 classification &

common patterns

HHH CCC

12,89–96 2016–2020 common vulnerabilities HHHHHHHHH CCBBBHCCB
97,98 2016 design models HH BB
99 2016 interfaces for updating

smart contracts

H C

Design tools 100–102 2017–2019 detecting re-entrancy

vulnerabilities

HHH CHH

103–110 2017–2020 detecting gas-related

vulnerabilities

HHCHHHHH HHBCHHCH

111 2018 detecting trace

vulnerabilities

H C

112 2019 detecting event-

ordering bug

H H

113,114 2018–2020 detecting integer bug HH CC
89,115–123 2016–2020 general detection by

symbolic execution

HHHHHHHHHH CCCCCCHHCH

124,125 2018–2019 general detection by

syntax analysis

HH CC

126–130 2018 general detection by

abstract interpretation

CCHHC CCCHH

131 2019 general detection by

data-flow analysis

H C

132 2018 general detection by

topological analysis

H H

133,134 2018 general detection by

model checking

HH BH

135 2019 general detection by

deductive proof

H C

(Continued on next page)

ll
OPEN ACCESS

8 Patterns 2, February 12, 2021

Review

Table 1. Continued

Class Refs.a Year Keywords Theoryb Realizationc

136 2018 general detection by

satisfiability modulo

theories

H B

137–139 2018–2019 general detection by

fuzzing test

HHH CCC

140–149 2016–2019 frameworks CHHCHCHHHH BCBHCCBBBH
143,150–156 2016–2019 Languages CHHHHHCC HCCBCBCC
90,157–159 2017–2019 basic tools HHCH BCCC

Execution

schemes for

smart contracts

Private

contracts with

extra tools

160–162 2015–2018 private contracts with

multi-party computation

HCC CHB

6,140,141 2016–2018 private contracts with

zero-knowledge proof

HCH CBC

161,163–168 2017–2019 private contracts with

trusted execution

environment

CCCCCCC HHCHHCC

Off-chain

channels

25,59,169–173 2015–2019 payment channel network

on Bitcoin

HCHHCCC CHBBBHH

174–177 2015–2017 payment channel network

on Ethereum

HHHC BCCC

178–185 2017–2019 state channel network CCCCHHHC CBHBHCCC

Extensions

on core

functionalities

186,187 2016–2017 Bitcoin covenants HH BH
188,189 2019–2020 moving contracts across

blockchains

HH HH

190 2018 proof-carrying smart

contracts

H B

191 2018 private contracts with

one-step proof

C C

192 2018 complex contract

execution without

validation

C H

193 2018 private execution of

arbitrary contracts

C C

194 2020 execution of interactive

complex smart

contracts

C H

aIf there are multiple references on the same line, there will be multiple marks of C, H, or B in the ‘‘Theory’’ and ‘‘Realization’’ columns with the

same order.
bIn the ‘‘Theory’’ column, the symbolsC,H, andB represent that the work has both complete description and formal security proof, has description

but no proof, and has neither description nor proof.
cIn the ‘‘Realization’’ column, the symbolsC,H, andB denote that the work has open-sourced implementation, has implementation but is not open-

sourced, and has no implementation. The word open-sourced here means the source code is released online and available for all users.

ll
OPEN ACCESSReview
succeeding researchers and developers to learn from these

schemes. Besides, if there are multiple references at the same

line, there will bemultipleC,H, orB in the ‘‘Theory’’ and ‘‘Real-

ization’’ columns in the same order.
4. CONSTRUCTING SMART CONTRACTSWITH SCRIPTS

Script-based blockchains usually provide simple stack-based

opcodes to facilitate a more flexible circulation of cryptocurren-

cies. For example, a payer could specify a condition under which

the payee receives his payment. The primary purpose of such

script languages is to facilitate simple financial affairs or de-

mands. Therefore, smart contracts in script-based blockchains
are relatively simple and limited compared with those in Tu-

ring-complete blockchains.

In this section, we discuss the construction schemes of smart

contracts in script-based blockchains. We take Bitcoin as a

representative. The reasons are as follows.

(1) Bitcoin is the first and most well-known script-based

smart contract platform.

(2) Most state-of-the-art script-based blockchains are

derived from Bitcoin, and thereby most construction

schemes in Bitcoin could be easily applied to such block-

chain systems with slight modifications.

(3) Most relevant studies also focus on the construction of

smart contracts in Bitcoin.
Patterns 2, February 12, 2021 9

Figure 5. Usage of the OP_RETURN opcode
(until February 2017)
Figure reprinted with permission from Bartoletti and
Pompianu44.

ll
OPEN ACCESS Review
We divide the schemes related to the contract construction

into two categories: design paradigms and tools. Design para-

digms here refer to the modular patterns in functionalities, appli-

cable to different scenarios and widely considered secure. Such

schemes may help to develop secure smart contracts efficiently

(see Section 4.1). Design tools here refer to the solutions aimed

at guaranteeing the security of smart contracts (see Section 4.2).

4.1. Design paradigms
As mentioned in Section 2.1.2.1, most smart contracts in Bit-

coin19 use P2SH transactions. Before the introduction of the

P2SH transaction in BIP16,195 there were already a few transac-

tions that realized the contract for data storage by modifying (or

abusing) the standard ones. With the P2SH solution, transac-

tions are no longer restricted to direct payments. It becomes

possible to implement some simple protocols in Bitcoin.

To better support the implementations of smart contracts,

design paradigms are researched and proposed in many

studies. We divide the design paradigms in Bitcoin into four

parts, according to their use and applications.

Firstly, we have collected three data storage schemes pro-

posed in the early years (see Section 4.1.1), taking advantage

of the tamper-resistant nature of the underlying blockchain.

Such storage schemesmay serve as foundations for other appli-

cations such as digital forensics and data disclosure.

Secondly, there are eight papers further regarding the block-

chain as a public bulletin board based on the storage contracts

and implementing the secure multi-party computation protocol

(SMPC, Definition 15). SMPC has become a heated research di-

rection in recent years since it enables secure and privacy-pre-

serving communications among participants. Related schemes

focus on various features of SMPC, such as fairness and gener-

alization (see Section 4.1.2).

Thirdly, layer-2 protocols are proposed to alleviate the prob-

lems of huge confirmation delay and low throughput of Bitcoin.

Such protocols optimize both the money and time overhead by

moving the calculation off-chain (see Section 4.1.3). Note that

we especially move the discussion of layer-2 off-chain channels

to Section 6.2, since these schemes are typical and widely stud-

ied in the literature.

Finally, to avoid potential privacy leakage due toBitcoin’s public

nature, the concept of scriptlesscontracts is proposed,withwhich

a transaction reveals no information about the contract contents.

We have collected three papers on this topic (see Section 4.1.4).
10 Patterns 2, February 12, 2021
4.1.1. Data storage

The tamper-resistant property of Bitcoin

blockchain attracts users to store short

messages as witnesses or memorandums

on-chain.

The original version of Bitcoin does not

support storing data other than transac-

tions. Some users abuse the output field

(the hash of the target address in Tx:out)
in a standard transaction by filling it with meaningful strings,

such as sentences and ASCII art.196 However, the UTXOs in

such transactions will never be spent since it is almost impos-

sible to solve the secret keys according to such arbitrary strings.

Therefore, such UTXOs will stay in miners’ memory pool forever,

which results in the loss of hardware capacity.

To avoid such abuse, OP_RETURN opcode43 is introduced,

enabling appending additional messages in a transaction. Barto-

letti and Pompianu44 analyzed the usage of this opcode in 2017,

and we rephrase the statistical results in Figure 5, where most of

the known behaviors are related to digital forensics and data

closure. They conclude that at least 22 protocols adopt OP_RE-

TURN to provide services such as asset declaration, integrity

proof of files, digital copyright, and information recording. Faisal

et al.45 conducted similar work in 2018 and argued that OP_RE-

TURNmight be utilized by ransomware, serving as a certificate of

payment. Their statistical results and classifications are similar to

those of Bartoletti and Pompianu,44 sowe omit the details of their

work here.

We remark that data storage is the most fundamental applica-

tion in Bitcoin and other relevant platforms, and it is a prominent

feature of blockchain. Such utilization is still prevalent and

necessary in today’s more complex applications, e.g., launching

a complaint with certain pre-stored proofs or commitments

when a dispute occurs.

4.1.2. Secure multi-party computation

With the data storage contracts discussed above, Bitcoin can be

used as a public bulletin board without a trusted third party,

enabling the implementation of SMPC (Definition 15).

Andrychowicz et al.46 first implement a timed commitment

scheme in Bitcoin, whereby a commitment should be opened

within a specified time period, otherwise the publisher will be

penalized. They further propose a Bitcoin-based SMPC proto-

col. However, the amount of deposit grows rapidly when the

number of participants increases in the multi-party case, and

fairness is not guaranteed in practice. That is, the counter-

parties can abort or claim their deposits by trying to race other

transactions on-chain. Thereafter, two respective lottery

schemes based on two-party SMPC are proposed by Andrycho-

wicz et al.46,47. The former only supports the application of two-

party lotteries, while the latter supports arbitrary two-party func-

tions, and the ability to prevent the adversary from generating

valid transactions from the published ones (i.e., non-malleability)

is strengthened in the latter work.

Figure 6. Ideal claim-or-refund functionality
F�

CR
49–53

Figure reprinted with permission from Kumaresan
et al.49

ll
OPEN ACCESSReview
To alleviate the deposit-explosion problem in the multi-party

case, Bartoletti and Zunino48 propose a multi-party lottery con-

tact with fixed deposits, which requires a modification of the Bit-

coin mechanism. They then implement the scheme on Ethereum

(see Section 5.1.1.1). Kumaresan et al.49 consider a decentral-

ized online poker protocol. They propose a primitive called

secure cash distribution with penalties to guarantee the fair final-

ization of the poker game. A timed commitment scheme is also

used to incentivize honest behavior. Their scheme requires addi-

tional opcodes in Bitcoin and thus cannot directly apply to Bit-

coin, but it inspires subsequent works on general SMPC pro-

tocols.

In addition to the SMPC for specific applications mentioned

above, we have collected five studies dedicated to general

SMPC protocols. Bentov and Kumaresan50 introduced an ideal

functionality of the fair multi-party protocol in Bitcoin in 2014,

which is more general and could also be applied to other

script-based smart contracts. Their results are implemented to

the decentralized online poker by Kumaresan et al.,49 with the

primitive called secure cash distribution with penalties that gua-

rantees the fair finalization of the poker game. They also utilize

the timed commitment to incentivize rational players to behave

honestly. Kumaresan et al.51,52 improve the efficiency of the de-

posit-based general SMPC protocol they proposed.49 From

another aspect, Kiayias et al.53 further give the first fair and

robust SMPC protocol based on the blockchain.

Note that most SMPC protocols are proposed with formal se-

curity proofs. Since SMPC is a combination of several basic

schemes (e.g., commitments and the F�
CR), the universally com-

posable (UC) model197 is considered the most favorable proof

model in this context and is frequently used. The general

SMPC protocols described above50–53 use the same ideal

claim-or-refund functionality F�
CR for secure cash distribution.

We conclude the contents of F�
CR in Figure 6, where l is the se-
curity parameter, sid and ssid are two ses-

sion identifiers, and t is the round number.

A sender Ps sends a fund of value v to a

receiver Pr , and Pr should provide a wit-

ness u such that 4ðuÞ= 1 within the tth

round to claim the fund, where 4 refers to

the primitive predefined by Ps. Fsend;x

(resp. Freceive;x) is the ideal function that

sends (resp. receives) the message to

(resp. from) Px, where x˛fs; rg. Fbroadcast,

Frecord, and Fdelete are the ideal functions

that broadcast, record, and delete

messages.

The ideal claim-or-refund functionality

F�
CR requires the participants to deposit

somemoney as assurance for their honest

behaviors. The funds will be automatically

distributed by the smart contracts accord-

ingly. The on-chain scripts serve as an
intermediary that no single party could control, which greatly al-

leviates the hard work for designing SMPC protocols. With this

F�
CR, different schemes are designed49–53 to optimize the effi-

ciency, fairness, and robustness of SMPC.

However, all these blockchain-based SMPC protocols as-

sume that the participants are rational enough to behave accord-

ingly, and this is weaker than the standard malicious adversary

model. Besides, due to the low transaction-processing rate,

such SMPC protocols may take more time than the tradi-

tional ones.

For future research, the efficiency of blockchain-based SMPC

is still attractive. The trade-off between best-case and worse-

case overhead may be considered: to improve the best-case ef-

ficiency to make honest users more comfortable or minimize the

worst-case overhead to protect honest users’ interest. Although

several general SMPC protocols have been proposed, the au-

thors all choose to give a specific implementation of their proto-

col, and a compiler that converts arbitrary multi-party computa-

tion protocols into smart contracts (scripts) is still absent.

Therefore, we recommend that researchers and developers

pay more attention to the implementation aspects and make

these general blockchain-based SMPC protocols really ‘‘gen-

eral’’ and practical.

4.1.3. Layer-2 protocols

Smart contracts written in scripts are limited in complexity and

processing rate. Layer-2 protocols are introduced to overcome

these problems. The main idea is to separate the computation

from the validation process. That is, the executions of smart con-

tracts are performed off the blockchain, and only necessary

steps such as setup, recording, settlement, and dispute resolu-

tion are carried out on the blockchain. In this way, the limitation of

opcodes and the effect of high transaction delay can be avoided.

Moreover, since only the final results and information used for

disputations are publicly available, the privacy during the
Patterns 2, February 12, 2021 11

A

B

Figure 7. Micropayment from Alice to Bob20

(the time and payload field is omitted for
simplicity)
(A) Alice’s deposit and refund transactions through
a multi-signature mechanism.
(B) Update of the payment transactions.

ll
OPEN ACCESS Review
communications among participants and the contracts is

enhanced while taking advantage of the auto-enforcement of

smart contracts. Related schemes are classified and summa-

rized in Jourenko et al.198 (up to 2019) and are divided into three

types: off-chain channel, construction schemes for off-chain

networks, and off-chain network management. Based on Jour-

enko et al.,198 we summarize the design patterns of contracts

related to the layer-2 protocol, as described below.

The payment channel is one of themost significant components

among layer-2 protocols. It is first introduced by Hearn20 and is

known as the micropayment channel, a protocol that conducts

continuous payments to a recipient. It utilizes the multi-signature

opcode CHECKMULTISIG provided in Bitcoin to spend the UT-

XOs in such transactions, requiring more than one signature.

To better illustrate the payment channel, we restate the micro-

payment channel in Figure 7 according to Hearn,20 and the time

and payload fields are omitted for simplicity. Suppose a channel

is establishedbetween the payer Alice and the payeeBob. Initially,

Alice creates (but does not broadcast) Tx0 that deposits ₿x to a

multi-signature address amul, which requires both signatures of

Alice and Bob to spend the UTXO. Alice then generates the refund

transactionTx1, which returns the funds from amul to Alice. There is

a timelock t in Tx1: if ₿x is not claimed in t, Alice can reclaim it freely

with her signature. Alice and Bob jointly sign and broadcast Tx1,

and Alice simultaneously broadcasts Tx0. Hence, Alice’s ₿x is

locked in amul. Whenever Alice wants to pay, she creates the

transaction Txi + 1 (i denotes the ith update) and sends the signed

Txi + 1 to Bob. In Txi + 1, the fund ₿x in amul is divided into two parts,

₿
�P

i

di

�
for Bob and the rest for Alice, where di denotes the value

in ith payment and
P
i

di is the total amount paid toBob. Finally, Bob

signs and broadcasts the latest transaction to finalize the pay-

ment, and both Alice and Bob will get what they deserve. Since

the inputs of Txi all come from the same address amul, only one

finalization will take effect. Therefore, Bob has the incentive to

broadcast the latest payment to get the coins he deserves.

With properly designed scripts and initial on-chain setup (as

described above), Alice could continuously pay Bob in exchange
12 Patterns 2, February 12, 2021
for Bob’s service or goods, as long as no

dispute occurs and Alice has enough

money deposited. Such payment is no

longer conducted through blockchain.

This strategy avoids the long time delay

for each transaction (e.g., waiting for sub-

sequent six blocks in Bitcoin) and saves

transaction fees, especially when the pay-

ment amount is small and frequent.

Based on the micropayment channel

described above, the concepts of pay-

ment channel networks and state channel
networks are derived. Their main idea and the structure of scripts

(or contracts) are similar, and related studies are dedicated to the

fairness of the protocol, which is conducted through off-chain

communications, so we reserve the introduction of these

schemes to Section 6.2.1.

The probabilistic payment system is another research direc-

tion in layer-2 protocols. It was first implemented as smart con-

tracts by Pass and Shelat54 in 2015. The core idea is that the

transactions only succeed in a probabilistic manner. In other

words, for a fixed success probability r and amount ₿x per trans-
action, on average a recipient will get ₿rx in every transaction. It

can be applied in lotteries and other situations involving a large

number of small payments. In such a system, senders must

make two deposits, one for the payment and the other for the

penalty. Furthermore, the scheme in Pass and Shelat54 requires

a verifiable trusted service (VTS) to validate probabilistic pay-

ments, and anyone can observe the VTS’s misbehavior through

on-chain information. Moreover, the authors propose a refined

scheme that the VTS will never be invoked in the best case. Hu

and Zhang55 adopt a timelocked deposit mechanism in Bitcoin

to simplify the initial deployment procedure, which only needs

one on-chain transaction to achieve the same functionality as

the original scheme in Pass and Shelat54. Chiesa et al.56 propose

a concept of decentralized anonymous micropayment. They uti-

lize the fractional message transfer technique to transfer mes-

sages in a probabilistic manner and protect privacy in the prob-

abilistic payment system, but they point out that the double-

spending in their probabilistic payment system is inevitable

and analyzes this attack’s effect on their work.

We restate the probabilistic payment system54 in Figure 8.

Similar to that in a micropayment channel, Alice first deposits

the escrow ₿x and penalty ₿y to the multi-signature addresses

ae and ap, respectively. Next, Bob generates a random number

r1 and sends FSHA�256ðr1Þ to Alice, along with his address aB,

where FSHA�256 refers to the SHA-256 hash function. Afterward,

Alice generates the payment transaction Tx1 and penalty transac-

tion Tx2 in Figure 8A, where the zero address a0 is used to destroy

the funds. Tx1 and Tx2 are sent to VTS after being signed. Note

that there is a timelock t in Tx1 and Tx2, similar to that in the

A B

Figure 8. Probabilistic payment from Alice to Bob
(A) Deposit and penalty escrow required for setup in the system.
(B) Interactions between Alice and Bob for a probabilistic payment.
Figure reprinted with permission from Pass and Shelat54.

ll
OPEN ACCESSReview
micropayment scheme. Next, Alice generates a random number

r2. If r14r2<r holds, where r is related to the pre-agreed probabil-

ity, their message transcripts will be sent to VTS, and VTSwill sign

and broadcast Tx1 if the message is correct, as shown in

Figure 8B. Note that during the whole process, when Bob and

VTS receive a signature, they shall verify it before other operations.

In addition, if Alice spends the ₿x before Tx1 takes effect, the VTS

will sign Tx2 so that Alice’s penalty deposit will be destroyed.

The probabilistic payment system reduces the number of

transactions, decreases transaction fees, and indirectly im-

proves the transaction rate. However, this mechanism is only

applicable for limited scenarios since it introduces a third party

and assumes the users are rational. Moreover, it is only relevant

to the payments rather than general applications. As for future

research, the privacy, efficiency, and security issues could be

better illustrated, e.g., give formal definitions and proofs of secu-

rity within the UC model, minimize the worst-case performance,

or introduce more practical and realistic assumptions for adver-

saries.

4.1.4. Scriptless contracts

The traditional P2SH-based smart contracts require publishing

the full scripts, whichmay cause privacy leakage during commu-

nication among users and smart contracts. Apart from the layer-

2 protocols described above, the scriptless contract is another

solution to this problem. It is similar to a standard transaction

but achieves the same goal as smart contracts. Since there is

no script, the contents of a smart contract would never be dis-

closed. It is first proposed Banasik et al.,57 and its original goal

is to prevent miners from rejecting packaging P2SH transactions

because executing scripts consumes more time and space than

standard transactions. Besides, an application instance of

selling a factorization of an RSA modulus is provided by Banasik

et al.,57 which requires an additional opcode in Bitcoin.

Scriptless contracts are further summarized by Poelstra,58

who presents a way to construct a smart contract without

exposing scripts. With Schnorr signature199 (which is not

currently compatible with Bitcoin), it is possible to execute

scripts only among parties involved in the transaction, and only
the final settlement is updated on-chain. Such transactions for

scriptless contracts are indistinguishable from the standard

ones, so the privacy of contract contents is well protected. How-

ever, such contracts’ functionality is quite limited, as the final

output should be directly verifiable in the same way as a stan-

dard transaction.

In the subsequent work, Malavolta et al.59 present scriptless

contracts using ECDSA, which is compatible with both Bitcoin

and Ethereum. Their work makes scriptless contracts more

practical and applicable without requiring a hard fork.

Some may argue that the hashed timelock contract (HTLC)

and revocable sequence maturity contract (RSMC) in Lightning

Network25 (see Section 6.2.1) also include the idea of non-public

execution. However, they are only used for efficient payments,

whose forms are almost fixed and monotonous, in contrast to

the scriptless contracts described above. That is, scriptless con-

tracts are more general and support more kinds of contracts

other than off-chain payments.

The privacy-preserving nature of such scriptless schemes

makes it an appealing research direction for privacy-sensitive

scenarios. For future research, scriptless contracts, especially

those compatible with ECDSA, could be adopted in more appli-

cations to hide smart contracts’ contents. However, this requires

a subtle design, and other properties such as fairness and effi-

ciency should be fully considered.

4.2. Design tools
We have so far described 18 design patterns for script-based

smart contracts, which may help developers start quickly under

similar scenarios. From another perspective, due to the lack of

readability and limitation in script operations, constructing

script-based smart contracts is hard work. Besides, since

most smart contracts involve money transfer, vulnerabilities in

smart contracts may cause severe economic loss. This makes

the security of smart contracts more critical than general com-

puter programs.

In this section, we introduce ten studies on design tools that

relieve the burden of contract developers and help them build
Patterns 2, February 12, 2021 13

Table 2. Languages for Bitcoin-relevant blockchains

Language Year Security proof Open-sourced Templates available Description

Ivy65 2016 B C C high-level language, educational

purposes only

Simplicity66 2017 C B B intermediary representations, verifiable

with Coq

BALZaC64 2018 B C C high-level language, along with a formal

model of Bitcoin

BitML67–69 2018 C C C high-level language, process-algebraic

language

C denotes that the language possesses the corresponding property in the column, while B means the opposite.

ll
OPEN ACCESS Review
secure smart contracts. We divide these references into analysis

tools and languages, where the former helps validate the security

of contracts and the latter facilitate the writing of smart con-

tracts.

4.2.1. Analysis tools

Concerning the security analysis in script-based smart con-

tracts, contracts in Bitcoin are abstracted as timed automata in

Andrychowicz et al.,60 where the states are finite and change

chronologically. In this way, the model detection tool UPPAAL
200

for timed automata can be used to ensure that the contract

runs as expected.

As for themodeling of smart contracts, Bigi et al.61 propose an

ideal contract model in Bitcoin and provide a security analysis

using game theory. The authors analyze the possible behaviors

executed by two parties and explain the feasibility of their model.

However, the model is limited in the two-party case, which ex-

cludes the multi-party situation. More recently, Atzei et al.62 pro-

posed a formal model of contracts in Bitcoin, which is the base of

the high-level language BALZaC64 (see Section 4.2.2).

There are only a few analysis tools for script-based smart con-

tracts during our survey, partially because smart contracts are

less used compared with those in Turing-complete blockchains.

Besides, scripts are mostly used to transfer money among users

conditionally, and thus vulnerabilities and bugs are less reported.

For future research, the various security analysis techniques for

Turing-complete blockchains (see Section 5.2.1) may be adop-

ted in script-based platforms. During this migration, most efforts

may be consumed by the definition of potential vulnerabilities in

scripts. Moreover, multi-party protocols in the script-based plat-

forms aremore difficult to model and analyze, whichmay also be

a potential research direction in this context.

4.2.2. Contract languages

Considering the difficulty in script programming, numerous new

languages for smart contracts are proposed to improve the ex-

pressivity, readability, and verifiability of the Bitcoin scripts.

These languages are shown in Table 2, where C denotes that

the language has the corresponding properties while B means

the opposite. They can be divided into high-level languages

and intermediate representation languages according to their

expressivity. High-level languages refer to those that are more

expressive and can be directly used by ordinary developers

with ease, while intermediate representation languages are use-

ful during the compilation and security analysis.

On the expressivity aspect of contract languages, Ivy65 is one

of the earliest high-level languages designed for Bitcoin. Ivy’s
14 Patterns 2, February 12, 2021
syntax is similar to that of common high-level languages, and it

adds some specialized keywords for operations in Bitcoin.

Some examples are given in its documentation,65 e.g., Lock-

WithPublicKey and HTLC (the core technique in Lightning

Network, for more details see Section 6.2.1). However, the secu-

rity proof of Ivy itself and the compiled scripts is lacking, so its

use is restricted to educational purposes.

As mentioned in Section 4.2.1, Atzei et al.62,63 propose a

formal model of Bitcoin contracts and develop the high-level lan-

guage BALZaC.64 They also provide a corresponding analyzer

and compiler that compiles BALZaC to standard transactions.

Besides, they describe the existing smart contracts with their

model, including crowdfunding, timed commitments, micropay-

ment channels, and lotteries. BALZaC enables developers to

define Bitcoin smart contracts with a concise syntax. However,

it lacks a security analysis.

On the verifiability aspect of smart contracts, O’Connor66 de-

signs a low-level intermediate representation language,Simplicity,

which uses denotational semantics defined in Coq,201 a popular

verification tool. With Coq and other auxiliary tools, Simplicity

helps developers easily validate the security of a smart contract.

In addition, the author claims that Simplicity also supports static

analysis to analyze the efficiency of contract execution.

There are studies that consider both the expressivity and veri-

fiability of the script language in Bitcoin. Bartoletti and Zunino67

propose a high-level language, BitML, which encapsulates the

complex instructions and provides a concise and convenient

expression for smart contracts in Bitcoin. They also provide a

compiler that converts BitML programs into standard Bitcoin

transactions. The correctness of the compiler is proved. Namely,

it incurs no additional error or bug during conversion. Other

works68,69 implement several common smart contracts in BitML,

such as covenants and timed commitments. However, BitML

language is still limited to some extent as there are contracts

that could not be expressed by it.

We note that high-level languages are quite attractive for script-

based blockchains, which will greatly alleviate the burden of con-

tract programmers, as is done by the Solidity language in Ether-

eum. However, there will be several problems with the adoption

of high-level languages. One of the major challenges is converting

the programs written in high-level and script languages to each

other without sacrificing correctness. In fact, this problem is also

apparent in Ethereum (see Section 5.2.2.2). Aswe have observed,

although BitML is a provable secure high-level language, the

expression and syntax are still quite sophisticated compared

Table 3. Design patterns for Turing-complete smart contracts

References Year Categorya Main contributions Open-sourcedb

48,70 2017 specific patterns multi-party lottery CC
71,72 2018–2019 loan contract CB
78,79 2018 private auction protocol CC
73–77 2016–2020 smart contracts for government processes

and services

BBBBC

80–84 2017–2019 off-chain computation and storage BBCBB
22 2016–2020 general patterns official guidance and examples for solidity C
85 2016–2020 best practices on smart contracts C
86 2016–2020 solidity library C
28,87,88 2017–2018 common patterns for popular applications CCC
12,89–94 2016–2020 vulnerabilities in smart contracts CCBBBBC
95,96 2016, 2019 programming errors found in smart contract

courses

CB

97,98 2016 model and schemes for contract design BB
99 2016 methods for contract update and deletion

following existing mechanism

C

aSpecific patterns here mean that the scheme is limited to specific applications, and general patterns denote that the scheme is general for the con-

struction of any contract (even for smart contracts in different platforms).
bC (orB) here indicates that the implementation can (or cannot) be accessed in public online.When there aremultiple references on a single line, there

will be multiple C or B correspondingly.

ll
OPEN ACCESSReview
with modern high-level expressive languages such as JavaScript

or Solidity. It may prevent programmers from a quick start. An

easy-to-use and provable secure programming language and a

compiler that accurately converts the programs into scripts are

still needed for script-based blockchains.

5. CONSTRUCTING SMART CONTRACTS WITH TURING-
COMPLETE LANGUAGES

To extend the limited operations in Bitcoin’s script language,

Ethereum introduces a new virtual machine structure to support

Turing-complete programming languages, greatly extending the

application scenarios of smart contracts. The smart contracts

are executed inEthereumVirtualMachine in the formof EVMbyte-

code. In fact, to facilitate the definition of the execution rules in

smart contracts, numerous high-level programming languages

are introduced, which can be converted into bytecode by com-

pilers, such as Solidity,22 LLL (Lisp-Like Language),202 and Ser-

pent.23 Such high-level languages are featured with high expres-

sivity and can reduce the difficulty of contract construction.

There are also many derivatives of Ethereum, whose execution

mechanisms are almost the same as EVM and support Turing-

complete languages. Here we call such systems Turing-complete

blockchains. Similar to Bitcoin, most related research is conduct-

ed onEthereum, and the results can be easily transferred to Ether-

eum’s derivative systems. Therefore, we also take Ethereum as

the representative to describe the contract construction schemes

on Turing-complete blockchains. The schemes here are divided

into two parts, design paradigms and tools, as discussed in Sec-

tion 5.1 and Section 5.2, respectively.

5.1. Design paradigms
To reduce errors caused during contract programming, devel-

opers are suggested to refer to contract design paradigms,
which are carefully designed against common attacks and

recognized as safe. We divide the related schemes into two cat-

egories: paradigms for specific applications and general pur-

poses. The former refers to the specialized design patterns in

some popular application scenarios (see Section 5.1.1) and the

latter describes the patterns in general cases (see Section

5.1.2). We remark that both types of paradigms serve as essen-

tial building blocks for reliable and verifiable data communication

upon blockchain.

We summarize and classify these schemes according to their

application scenarios in Table 3. The symbol C (or B) in the

‘‘Open source’’ column indicates that the implementation can

(or cannot) be publicly accessed online. When there are multiple

references on a single line, there will be multiple C or B corre-

spondingly.

5.1.1. Paradigms for specific applications

In the early stage of smart contracts, lottery, loan, auction, and

data storage were the main applications on the market. These

contracts are directly related to financial transactions, and their

contents and logic are relatively simple. Although such contracts

are only designed for specific scenarios, they are still significant

and helpful for similar applications. Nonetheless, in recent years

smart contracts have attracted governments’ attention, and may

provide benefits for municipal government processes. In the

following, we introduce 16 studies relevant to five common pat-

terns: lottery, loan, auction, e-government, and off-chain compu-

tation and storage. We remark that such specific applications are

miscellaneous, and thus we only focus on the commonly ad-

dressed scenarios in the literature.

Note that although some of the paradigms introduced here

might be out of date, their core idea and the revolution are still

worth attention. In other words, these schemes might become

vulnerable or inefficient during the evolution of smart contracts,

and they could be considered as counter-examples in practice.
Patterns 2, February 12, 2021 15

ll
OPEN ACCESS Review
5.1.1.1. Lottery. Traditional lottery schemes require a trusted

third party to receive bets from participants and distribute the

deposits afterward. However, there exist risks of collusion and

absconding for online lottery websites. Due to the anonymity

and trustless property of the blockchain and smart contracts,

coupled with the inherent cryptocurrencies, smart contracts

can replace such TTPs to eliminate these risks and minimize pri-

vacy leakage. Lottery thereby becomes one of the most popular

applications of smart contracts.

Several lottery contracts implemented in Bitcoin have already

been mentioned in Section 4.1.2 as examples of the proposed

SMPC protocols. With the Turing-complete languages sup-

ported by Ethereum, lottery contracts could be implemented

with better performance and less cost. As mentioned in Section

4.1.2, Bartoletti and Zunino48 devised a multi-party lottery

scheme with fixed collateral and implemented it on Ethereum.

Their solution comes from a tree of two-party games to deter-

mine the final winner among all the participants. The authors

also describe a variant that reduces the number of transactions

by a set of iteration games between adjacent players, but it

cannot guarantee fairness. Miller and Bentov70 put forward

another lottery scheme with zero collateral. They adopt a similar

tree of two-party games as that in Bartoletti and Zunino,48 but

their solution requires an extra opcode to take effect in Bitcoin.

The authors mention that they implement their scheme on

Ethereum.

The lottery schemes can be more easily implemented than

those in Section 4.1.2, thanks to the Turing-complete language

and account-based model of Ethereum. How to design a fair,

collateral-efficient lottery scheme is still an open problem. This

might be solved by taking advantage of extra tools such as cryp-

tographic schemes or trusted execution environments (TEE,

Definition 17). However, privacy issues are still unaddressed,

especially in lotteries and other privacy-sensitive scenarios.

Although Ethereum adopts the pseudonym mechanism, the

identities may be traced because of the blockchain’s transpar-

ency. Therefore, off-chain computation and other privacy-pre-

serving techniques (e.g., ZKP) may be considered for future im-

provements.

5.1.1.2. Loan. Similar to the motivations in the lottery schemes,

the loan is another popular application of smart contracts. How-

ever, in loan contracts participants oftenwant to borrow and lend

fiat money since the fluctuation of cryptocurrency market value

may cause an undesirable loss for either one of the participants.

Moreover, loan contracts have to handle the counter-party risk,

whereby a borrower may abscond with funds.

To solve the problems above, Okoye and Clark71 designed a

set of loan contracts named U
$
gw

$
owith different methodologies.

These contracts ensure the safety of funds for both borrowers

and lenders. To manage the unstable market value, the authors

adopt an oracle contract (which justifies the current exchange

rate) to enable the users to settle the contract with fiat currency

(e.g., USD). Moreover, other methodologies, such as mortgage

and insurance, are also employed for different security concerns.

Norta et al.72 propose a capital transfer system for users with no

access to banks. They propose an Ethereum-based eFiat

scheme, where financial institutions provide the exchange rate

of fiat currencies (i.e., act as an oracle). They further take the

lending process as an implementation example.
16 Patterns 2, February 12, 2021
The blockchain-based loan schemes usually require an oracle

to reflect the cryptocurrency price. However, such an oracle may

introduce new vulnerabilities and cause huge economic loss.

One example is the attack against the flash loan protocol through

oracle manipulation attacks.203 Therefore, for loan schemes to

safely take effect a secure and accurate oracle contract is

required, and represents is a promising research direction.

5.1.1.3. Auction. In addition to lottery and loan, auction con-

tracts also fully utilize the anonymity and no-TTP features of

blockchain. Strain78 is a private auction protocol whereby partic-

ipants’ identities and bids are hidden. To avoid using an ineffi-

cient SMPC protocol, Strain improves the two-party comparison

mechanism204 and verifies the results by using ZKP (Definition

16). Besides, a reversible commitment mechanism is applied

to ensure fairness when a malicious termination occurs. Howev-

er, although the scheme avoids directly publishing the auction

details on-chain, it still leaks the order of bids. To solve this prob-

lem, Galal and Youssef79 propose a verifiable secret auction pro-

tocol using Pederson commitment205 and ZKP, and implement

their work on Ethereum. Their scheme ensures that participants

cannot learn any information about others during the auction

process, and anyone is allowed to verify the auction results.

However, a formal security proof of their scheme is absent.

We remark that fairness, security, and privacy issues in auc-

tion schemes require further consideration in the future. A formal

proof of the privacy and security properties is a necessity, and

other tools such as cryptographic schemes and hardware could

be introduced to improve the state-of-the-art solutions.

5.1.1.4. E-government. Blockchain and smart contracts pro-

vide convenient verifiability and could make participants collab-

orate without mutual trust. Ølnes73 argues that such advantages

of smart contracts can be used for applications other than cur-

rencies, especially for online government processes (e-govern-

ment). Ølnes et al.74 further discuss the benefits and implications

of blockchains for e-government applications. With a similar

point of view, Hou75 investigates the blockchain applications of

e-government in China. Abodei et al.76 select Nigeria as the

study case and enumerate the blockchain solutions to solve

the existing problems in the government’s public project pro-

cesses. However, all the aforementioned discussions involve

no practical implementations.

Most recently, Krogsbøll et al.77 have pointed out that e-gov-

ernment applications are possible with smart contracts if taking

care of privacy issues. They give a prototype implementation of

governmental services in Denmark, with attractive properties,

such as verifiability, that are beneficial for the transparency of

governmental affairs.

We remark that e-government might be one of the most prom-

ising applications of smart contracts. Researchers and devel-

opers may pay attention to the unique requirements exhibited

by the government affairs, such as enabling tens of thousands

of citizens to participate in a single event efficiently, keeping sen-

sitive personal information private, and preventing malicious

manipulation.

5.1.1.5. Off-chain computation and storage. Taking smart con-

tracts off-chain is a promising way to avoid the side effects of the

high confirmation delay while maintaining the trustless property

offered by blockchain. With this idea, Eberhardt and Tai80 analyze

the suitable scenarios of off-chain computation and storage and

Figure 9. Distribution of the number of
transactions in Bitcoin and Ethereum (until
January 2017)
Figure reprinted with permission from Bartoletti and
Pompianu28.

ll
OPEN ACCESSReview
provide several design patterns for off-chain schemes. The typical

scenarios are payment channel network and state channel

network.198 These solutionsmainly focus on the execution-related

aspects, so we leave the discussion to Section 6.2.

To attain advantages (e.g., privacy, latency, and transaction

fees) from both on- and off-chain implementations, Molina-Jimé-

nez et al.81 propose a hybrid solution that splits a smart contract

into on-chain and off-chain components. However, this comes

at the cost of a complex implementation strategy, which depends

on concrete applications. The authors provide a proof-of-concept

implementation of a simple trading contract82 to demonstrate the

feasibility of their work. Similarly, Li et al.83 separate a smart con-

tract into the light/public parts and heavy/private parts to avoid

high transaction fees and confirmation delay caused by complex

on-chain executions. Their solution also suffers from the absence

of a general way to make such separation.

As for off-chain data exchange, Norta et al.84 propose the Da-

taWallet, a data-sharing system. The data requester and pro-

vider interact with the help of a smart contract, ensuring the fair-

ness of data exchange.

For future research, a general way to split arbitrary protocols

into on- and off-chain parts could be investigated. Moreover,

problems such as making these parts collaborate efficiently

and preventing potential attacks against the on-chain part are

also worth consideration—for example, a fine-grained access

control mechanism could be implemented.

5.1.2. Paradigms for general purposes

We have thus far described 16 design paradigms for specific ap-

plications. From another aspect, some researchers are trying to

give a general pattern that applies to the design of all kinds of

smart contracts. Specifically, we have collected three references

providing the so-called ‘‘best practices’’ to mitigate common

bugs and security risks during development. Another three pa-

pers classify smart contracts according to application scenarios.

They give patterns for each category, which are referred to as

‘‘classification and patterns of common contracts’’ in this

review. There are also eight studies focusing on common errors
in the contract construction process, as

counter-examples for beginners to learn

from, which we call ‘‘common vulnerabil-

ities and errors.’’ Finally, there are three

‘‘contract design models’’ describing con-

tract construction experience andmethods

from a higher perspective. As mentioned in

Section 5.1, these paradigms may provide

insights for more useful applications on the

data communication and others for new in-

comers.

5.1.2.1. Best practices. It is recommen-

ded to refer to best practices given by re-

searchers or communities to avoid com-

mon vulnerabilities as much as possible.
The Solidity document,22 which serves as official guidance for

writing smart contracts, provides tips, requirements, and exam-

ples of contract construction. It is considered amust-read docu-

ment for beginners since it has been verified and reviewed by

most developers, and it has been continuously improved and up-

dated. In addition, Consensys Diligence85 and OpenZeppelin86

also provide an open-sourced list of best practices and libraries.

We remark that such collecting of best practices is not a

straightforward task, since smart contract technology is evolving

quickly. Besides, newly found vulnerabilities may continuously

influence the forms of best practices. Therefore, the way is

long toward enumeration of a fully covered list of the state-of-

the-art best practices in contract programming, which will

require non-trivial work from the community.

5.1.2.2. Classification and patterns of common contracts. Sta-

tistics and classification of existing contracts could help devel-

opers find their desired reference patterns for their target appli-

cation scenarios and further avoid contract vulnerabilities that

may commonly occur in specific applications.

In terms of classification, Bartoletti and Pompianu28 first clas-

sify the application scenarios of smart contracts. They then list

several common contractmodes, including token, authentication,

oracle, randomness, poll, time constraint, termination, math, and

fork check. Their classification covers most smart contracts, and

the numeric results are shown in Figure 9,28 which illustrates the

number of transactions for different types of smart contracts on

Bitcoin and Ethereum. Note that the zero value in this figure refers

to a negligible percentage. According to their results, financial and

notary-related smart contracts contribute to the majority of trans-

actions, which is much more apparent in Bitcoin. Although their

results only reflect the situation up to January 2017, we infer

that this situation might still hold nowadays because of the prev-

alence of ERC-20 tokens206 and decentralized finance.207

For the security of smart contracts, Wöhrer and Zdun87,88 give

several contract patterns according to some known secure con-

tracts from the perspectives of access control, authentication,

contract life cycle,208 and contract maintenance.
Patterns 2, February 12, 2021 17

Table 4. Potential vulnerabilities in smart contracts on

Ethereum12,89,90

Level12 Causes12,89 Security90 Attacks12,89

Solidity call to the unknown call integrity the DAO attack

re-entrancy

gasless send – King of the Ether

Throne

exception disorders atomicity King of the Ether

Throne and

GovernMental

type casts – –

keeping secrets – multi-player

games

EVM immutable bugs – Rubixi and

GovernMental

ether lost in transfer – –

stack size limit – GovernMental

Blockchain unpredictable state independence

of mutable

account state

GovernMental

and dynamic

libraries

transaction-ordering

dependence

Run

generating

randomness

independence

of transaction

environment

–

time constraints GovernMental

ll
OPEN ACCESS Review
Similar to the best practices part above, we remark that the

classification of common usage and design patterns of smart

contracts require a continuous update, which turns out to be ab-

sent nowadays. Future researchers and developers may

contribute to extend the existing works andmake a classification

of the latest smart contract patterns.

5.1.2.3. Common vulnerabilities and errors. Statistics and

classification of common vulnerabilities and errors during

contract construction may serve as counter-examples, and rele-

vant research may help developers form a good contract

pattern.

In terms of common vulnerabilities, Luu et al.89 were the first to

summarize the security problems that commonly occur in smart

contracts. These problems are categorized into four types,

namely, transaction-ordering dependence, timestamp depen-

dence, mishandled exceptions, and re-entrancy vulnerability.

The first three concepts are relatively easy to understand from

their name, and the last one refers to a concept unique in the

smart contract field. We leave the introduction of re-entrancy

to Section 5.2.1, where the analysis tools specially designed

for such vulnerability are discussed.

Later, Atzei et al.12 also summarized the vulnerabilities on

smart contracts and divided them into different layers according

to the effects of attacks. For example, some of them affect the

correctness of execution while others may disturb the underlying

execution mechanism. The latest work of Groce et al.94 makes a

classification of 246 defects found in 23 Ethereum smart con-

tracts. They utilize several open-sourced analysis tools (i.e.,

Slither,131 Manticore,118 and Echidna,139 see Section 5.2.1)

along with manual auditing, and find that there are ten defects

per contract on average.
18 Patterns 2, February 12, 2021
In addition to common vulnerabilities, there are studies on the

security properties that smart contracts should satisfy. Following

the work of Luu et al.89 and Atzei et al.,12 Grishchenko et al.90

presented four security features that smart contracts should

meet. The smart contracts with such features could automati-

cally avoid several known vulnerabilities. Their classification is

useful for subsequent development and contributes to the

design of related vulnerability detection tools.

We integrate the above results in Table 4. The blanks in the ta-

ble indicate that the corresponding vulnerabilities are not dis-

cussed in these papers. We remark that Mense and Flarscher91

and Dika and Nowostawski92 do similar work that provides a tax-

onomy of the security issues in the literature. Moreover, both

studies give the severity level of each vulnerability.

With regard to common errors, Delmolino et al.95 enumerate

four common problems found in their smart contract courses.

Although they adopt Serpent23 as the programming language,

many problems are universal for all languages when designing

smart contracts. The authors summarize four types of errors,

namely design errors on state machines, the absence of crypto-

graphic protocols, unreasonable incentive mechanisms, and

vulnerabilities inherent in Ethereum. These errors are of educa-

tional meaning for all developers, especially beginners. Angelo

et al.96 also give a summary of their smart contract course but

focus more on the teaching process rather than the design skills.

From a practical perspective, Pérez and Livshits93 investigate

six frequently mentioned vulnerabilities in Ethereum and find that

the actual exploitation of these vulnerabilities is relatively rare:

the hacked amount only takes up to 0.27% of the total ETH

marked as vulnerable. The authors explain that this is because

most vulnerable ETH is held by several contracts that are not

exploitable in practice (e.g., the exploitation requires a malicious

majority).

The common vulnerabilities and errors mentioned above are

essential to the subsequent research and development of smart

contracts, especially the analysis tools that will be discussed in

Section 5.2.1. Inspired by Pérez and Livshits,93 future research

may pay attention to the actual influence of the vulnerabilities

on deployed smart contracts. Nevertheless, such classification

requires constant updates to reflect the latest discoveries.

5.1.2.4. Design models. Design models are often built from a

higher point of view, and can be seen as a design philosophy

orthogonal to the aforementioned best practices. Both design

models and best practices can help new developers to prepare

for the construction of smart contracts.

Clack et al.97,98 first discuss the basis, design method, and

research direction of smart contract templates, then discuss

the basic requirements of smart legal contracts, i.e., the con-

tracts serving legal purposes. They also propose a design model

for the storage and release of contracts from a higher level. Mar-

ino and Juels99 summarize the available methods for contract

updates without modifying the existing execution mechanism.

Developers are often required to reserve certain interfaces at

the beginning, and it is good practice to consider such updating

demands.

Due to the immutability of blockchains, specifications of smart

contracts cannot be easily updated. Therefore, effectively up-

dating the deployed smart contracts to eliminate detected vul-

nerabilities is one of the prominent research directions

Table 5. Analysis tools for smart contracts

Refs. Year Toolb Main Methods Inputc Open-sourcedd

Targets

Specific-

purpose

re-entrancy

attacks

100 2017 ECFChecker modular reasoning Solidity C
101 2018 ReGuard fuzzing Solidity, EVM bytecode B
102 2019 Sereum taint analysis EVM bytecode B

gas-related 103 2017 GASPER symbolic execution EVM bytecode B
104 2018 GasReducer pattern matching EVM bytecode B
105 2018 – symbolic execution Solidity B
106 2018 MadMax decompilation and

logic-based specification

EVM bytecode C

107 2019 GASTAP symbolic execution Solidity, EVM bytecode B
108 2019 GASOL symbolic Execution Solidity, EVM bytecode B
109 2020 Syrup symbolic execution

and SMT-solving

EVM bytecode C

110 2020 GasChecker symbolic execution EVM bytecode B

trace

vulnerability

111 2018 MAIAN symbolic execution EVM bytecode C

event-ordering

bugs

112 2019 ETHERRACER symbolic execution

and fuzzing

EVM bytecode B

integer bugs 113 2018 OSIRIS symbolic execution

and taint analysis

Solidity, EVM bytecode C

114 2020 VERISMART CEGIS-style verification Solidity C

Techniquesa

General-

purpose

symbolic

execution

89 2016 OYENTE symbolic execution Solidity, EVM bytecode C
115 2018 ETHIR symbolic execution Solidity, EVM bytecode C
116 2019 SAFEVM symbolic execution

and SMT-solving

Solidity, EVM bytecode C

117 2018 Mythril symbolic execution and

SMT-solving and taint

analysis

EVM bytecode C

118 2019 Manticore symbolic execution Solidity C
119 2018 TEETHER symbolic execution and

constraint solving

EVM bytecode C

120 2019 sCompile symbolic execution EVM bytecode B
121 2019 SMARTSCOPY summary-based

symbolic evaluation

application binary interface B

122 2018 SECURIFY abstract interpretation

and symbolic execution

Solidity, EVM bytecode C

123 2020 VERX symbolic execution

and predicate abstraction

Solidity B

syntax

analysis

124 2018 SmartCheck syntax analysis Solidity C
125 2019 NeuCheck syntax analysis Solidity C

abstract

interpretation

126,127 2018 EtherTrust abstract interpretation EVM bytecode CC
128 2018 Vandal abstract interpretation

logic-driven analysis

EVM bytecode C

129 2019 Gigahorse abstract interpretation EVM bytecode B
130 2020 eThor abstract interpretation EVM bytecode B

� 131 2019 Slither data-flow analysis and

taint analysis

Solidity C

� 132 2018 SASC topological analysis,

syntax analysis, and

symbolic execution

Solidity B

133 2018 – model-checking Solidity B

(Continued on next page)

ll
OPEN ACCESS

Patterns 2, February 12, 2021 19

Review

Table 5. Continued

Refs. Year Toolb Main Methods Inputc Open-sourcedd

model

checking

134 2018 ZEUS symbolic model checking

and abstract interpretation

SMT-solving

Solidity, C#, Go, Java, etc. B

� 135 2019 – deductive proof Why3209 C

� 136 2018 – SMT-solver Solidity B

fuzzing 137 2018 ContractFuzzer fuzzing application binary interface,

EVM bytecode

C

138 2019 ILF fuzzing Solidity C
139 2020 Echidna fuzzing Solidity, Vyper210 C

a� means that the taxon is trivial for a single object.
bIf the corresponding tool has no name, the blank is filled with –.
cThe input only refers to the form of smart contracts, so the analysis specification required in some tools is not included.
dC here means that the corresponding tool is open-sourced and can be referenced online, while B implies the opposite.

ll
OPEN ACCESS Review
nowadays. Other design models for security and privacy issues

are also of great significance.

5.2. Design tools
Design tools discussed here are used to help developers build

smart contracts more efficiently, and usually come in the form

of useful software rather than boring instructions. They may

reduce the security concerns of developers or simplify the devel-

opment process intuitively or interactively. Here we further divide

the existing design tools into analysis tools and auxiliary tools.

Analysis tools are used to perform security analysis when the

contracts are almost completed to find potential vulnerabilities

(see Section 5.2.1). On the other hand, auxiliary tools usually

take effect in contract development, facilitating the development

to some extent (see Section 5.2.2).

Prior to our work, we have observed six studies surveying the

contract design tools. Dika35 conducts a detailed comparison of

the analysis tools in 2017 from the aspects of the efficiency, ac-

curacy, and types of supported vulnerabilities. Harz and Knot-

tenbelt38 further analyze the related languages and security

tools. They provide a brief introduction and classification of

these languages and tools. Later on, Grishchenko et al.,126,127

Angelo and Salzer,39 Liu and Liu40 review the smart contract-

related security tools from several different aspects.

Based on the discussions above, we summarize, compare,

and analyze the existing contract languages and vulnerability

detection tools in detail (up to August 2020). Our work on the

contract design tools can be viewed as a further extension to

the surveys mentioned above.

5.2.1. Analysis tools

A smart contract is a piece of executable computer program de-

ployed on a blockchain. Therefore, traditional code analysis

methods can be naturally extended to the field of security anal-

ysis. Since there are many vulnerabilities unique to smart con-

tracts, many tools are specifically designed for these threats.

Specifically, we have collected 15 tools focusing on detecting

certain vulnerabilities that frequently appear and may cause se-

vere consequences. There are another 26 tools aimed at general

security analysis, which simultaneously detect multiple potential

vulnerabilities, check user-defined properties, and remind the

developers of potential risks. The former tools usually work
20 Patterns 2, February 12, 2021
with higher accuracy and help mitigate the pressure caused by

specific attacks. The latter remind developers of the vulnerabil-

ities and risks that are overlooked during development.

We list the analysis tools in Table 5 according to the type and

number of vulnerabilities they can detect. We divide them into six

classes in this paper: (a) re-entrancy attacks related; (b) gas con-

sumption related; (c) trace vulnerability related; (d) event-

ordering bugs related; (e) integer bugs related; and (f) general

detection tools. The first five classes of tools focus on specific

vulnerabilities, and we group them according to their targets.

The last type of tools achieves general detection of vulnerabil-

ities, and we group them according to the main techniques

they utilize, including symbolic execution, syntax analysis, ab-

stract interpretation, data-flow analysis, topological analysis,

model checking, deductive proof, satisfiability modulo theories,

and fuzzing test.

We note that there might be several specially designed

domain-specific languages for the analysis tools to support

user-defined conditions in the process of security analysis.

Such languages are not included in Table 5, because they usually

are accompanied by their corresponding tools. Moreover, con-

tents in the column ‘‘Input’’ represent the form of smart contracts

(e.g., Solidity or EVM bytecode) that the tool accepts as input.

The symbol C in the column ‘‘Open-sourced’’ means that the

corresponding source code can be referenced online, while B

implies the opposite. We remark that specific- and general-pur-

pose tools are illustrated separately. We group the tools capable

of detecting multiple vulnerabilities into the general-purpose

category, even though some of them can detect the vulnerabil-

ities targeted by the specific-purpose ones.

5.2.1.1. Re-entrancy attacks related. It is the re-entrancy attack

that made users suffer huge economic losses in the infamous

DAO event.11 In a re-entrancy attack, an attacker utilizes the fall-

back function to steal money from the smart contracts designed

in a non-standard manner.

The fallback function stands for a predefined function that has

no name or parameters. It is used to handle exceptional re-

quests, such as calling a function that does not exist. Inspired

by Atzei et al.12 and Rodler et al.,102 we depict the fallbackmech-

anism and re-entrancy attack in Figure 10. Ideally, when a con-

tract CA calls a public function in another contract CB, it waits

Figure 10. Fallback mechanism and the re-
entrancy attack
Figure reprinted with permission from Atzei et al.12

and Rodler et al.102.

ll
OPEN ACCESSReview
until the executed function is finished before returning to the re-

maining part ofCA. However, in some cases (e.g., when the call

function is invoked to transfer money), after the invoked function

is finished, the EVM would call the fallback function in CA before

returning to the expected part in CA, as shown in the left column

of Figure 10. If CB calls the contract CA in the fallback function,

then it comes to a situation of recursive invocation, as shown

in the right column of Figure 10.When the latter invocation starts,

the former is not finished, and thus contract CB re-enters CA.

Such a re-entrancy is undesirable and may cause unexpected

consequences, especially when the contract CA is not carefully

designed to handle such misbehavior. As depicted in Figure 11

(inspired by Atzei et al.12 and Rodler et al.102), when the contract

Attacker (CB in Figure 10) sends some value to contract Sim-

pleDAO (CA), the fallback function is invoked after the value is

processed by CA. We can see that the fallback function of CB

calls the withdraw function ofCA, and gets into lines 3–6. How-

ever, when the process gets into line 5, a ‘‘call’’ operation in CB

(the msg.sender) is invoked, andwhen the ‘‘call’’ is finished, the

fallback function is invoked again, before the process of getting

into line 6. That is, the value stored in CA is transferred but the

balance record is not adjusted. When the fallback function of

CB calls the withdraw function again, the condition at line 4

will still be true, and the value will be transferred repeatedly

before the credit record is adjusted.

Wemention that the re-entrancy attack is not influenced by the

out-of-gas exception discussed in Section 2.1.2.2, because the

call.value() function at line 5 only returns false upon failure

and does not invoke the reversion procedure.

Researchers have proposed various analysis tools to defend

against such attacks based on different methods and aspects.

Grossman et al.100 propose the concept of Effective Callback

Freedom, which requires that the invocation of the callback

(same to fallback) functionshouldnot affect the statesorbehaviors

of the original program. They claim that this concept can be effec-

tively used to detect re-entrancy attacks in Ethereum, and they

integrate their idea into the online detector named ECFChecker.

ReGuard101 is another tool for detecting re-entrancy vulnera-

bilities, utilizing the fuzzing test (see Section 5.2.1.6). ReGuard

accepts Solidity or EVM bytecode as input. It parses the input

into an intermediate representation and subsequently converts

it into a C++ program. The fuzzing engine is then employed to

generate random inputs. Finally, based on the fuzzing results

and the re-entrancy automaton proposed by the authors, the

final detection report is generated.

From the perspective of sustainability, Rodler et al.102 point

out that existing tools could only detect potential vulnerabilities
before the smart contracts are deployed.

Namely, deployed contracts are protected

from attacks. To solve this problem they

propose the Sereum scheme, which ex-

tends EVM by introducing taint analysis

and an attack detector. Sereum monitors
the EVM bytecode instructions at runtime and utilizes a writelock

mechanism that locks the states when calling outside functions.

This scheme fundamentally prevents the re-entrancy attack from

the underlying execution layer.

The re-entrancy attack is one of the most harmful events for

smart contracts. It enables an unauthenticated adversary to

steal money from the contract account, sacrificing other users’

interests. Various analysis tools have been designed against

such attacks as mentioned above, utilizing different techniques.

We note that most general tools also include the re-entrancy

attack as an analysis target (see Section 5.2.1.6). However,

most tools require manual checks to exclude false-negative

results.

For future research, researchers can consider the trade-off be-

tween efficiency and accuracy of the detection. Moreover, we

recommend automation to be augmented in the future. Such

automatic tools could give several suggestions for possible fixes

of the detected vulnerabilities, or even directly correct them and

prove that the modified programs achieve the same purpose as

before.

5.2.1.2. Gas consumption related. To prevent DoS attacks,

Ethereum introduces the gas mechanism to limit the number of

operations in a contract. However, this may cause new prob-

lems. For instance, it increases users’ economic cost since the

gas should be paid in advance for the contract execution. There

are several tools for optimizing gas consumption, using various

methods and techniques. We summarize the relationship among

these tools in Figure 12, where the arrows between tools refer to

the dependency. The gray names refer to the tools that are not

specifically designed for gas consumption.

Chen et al.103 point out that the non-standard design of smart

contracts may lead to unnecessary gas cost. By collecting and

analyzing smart contracts on Ethereum, the authors enumerate

seven patterns that may cost more gas than expected. Based

on symbolic execution (see Section 5.2.1.6), they further develop

an analysis tool GASPER that can detect three of them. GASPER ac-

cepts EVM bytecode as input and detects three kinds of abuse

patterns. The subsequent work104 further lists 24 gas abuse

modes and develops a tool named GasReducer. The input that

GasReducer accepts is also EVM bytecode. After code disas-

sembling and pattern matching, it recognizes all 24 abuse pat-

terns. Moreover, it automatically replaces the costly operations

with cheaper instructions that accomplish the same functionality.

Finally, by recalculation and verification of the optimized codes,

GasReducer ensures that the outcome contract still works as ex-

pected. GasChecker110 is another branch from GASPER. Ga-

sChecker enriches the gas-wasting patterns from seven to ten
Patterns 2, February 12, 2021 21

Figure 11. Simplified contract example to
conduct a re-entrancy attack
Figure reprinted with permission from Atzei et al.12

and Rodler et al.102.

ll
OPEN ACCESS Review
and can detect all these patterns through a parallel version of

symbolic execution upon EVMbytecode, which greatly improves

the performance when the workforce increases.

Similar to Chen et al.,103 Marescotti et al.105 propose two algo-

rithms for calculating the maximum amount of gas that may be

consumed by smart contracts, where the latter can be seen as

a simplified version of the former. These two algorithms also

use the symbolic execution method as GASPER. Different to

GASPER, by assuming a one-to-one correspondence between

the EVM and Solidity gas consumption path, both algorithms

can directly analyze the contracts written in Solidity. However,

their solution only calculates gas consumption statistics but

does not provide optimization suggestions.

Grech et al.106 also analyze the gas consumption problem in

Ethereum and propose an analysis tool, MadMax. based on Van-

dal’s decompilation technology and logic-drivenmodel (seeSec-

tion 5.2.1.6). MadMax decompiles EVM bytecode into a control-

flow graph and then uses a logic-based specification to detect

predefined gas-related vulnerabilities. The authors also give sug-

gestions for developerswhowrite smart contractswith high-level

languages, which is not accomplished in Marescotti et al.105

By improving and integrating existing tools, Albert et al.107 pro-

pose GASTAP. First, they improve the OYENTE tool (see Section

5.2.1.6) to generate a control-flow graph with more information.

They then improve the ETHIR tool115 (see Section 5.2.1.6) so that

it can convert the control-flowgraph into a rule-based representa-

tion. Based on these two improvements, alongwith other auxiliary

tools for calculation, GASTAP finally gets the upper bound of gas

consumption of each function in the contract, as is done inMares-

cotti et al.105 The GASOL
108 tool further extends GASTAP to give out

suggestions on the gas consumption optimization, provides an
22 Patterns 2, February 12, 2021
editor plugin for the convenience of pro-

grammers, and can automatically optimize

the gas-expensive fragments of code (if

needed). The automatic optimization is not

supported by GASTAP. Orthogonal to the

techniques used in GASOL, Albert et al.109

propose another way to find the cheapest

alternative instructions for a smart contract

through super-optimization211 and Max-

SMT encoding, which takes EVMbytecode

as input. They first extract a so-called stack

functional specification by symbolic execu-

tion, then use the Max-SMT encoding

method to feed the optimization task into

the SMT-solver, and finally get a set of opti-

mized operations with the same function-

ality as that of the inputs. The authors also

present an open-sourced implementation

named syrup.

Gas-related problems have attracted

enormous research. The gas consumption

is directly relevant to user experience,
since everyone needs to pay for it when calling smart contracts.

Moreover, the gas consumption may also influence the

throughput of blockchain. For instance, there is an upper bound

of 8 million gas212 per block in Ethereum, and when the upper

bound is achieved, no transactions will be further included in

this block. Therefore, gas-related research also helps to improve

the throughput of blockchain.

For future research, improvements on the efficiency and accu-

racy aspects could be further investigated. As supplementary to

prior works, research directions such as gas-wasting patterns

and novel analysis techniques with automation are also worth

consideration.

5.2.1.3. Trace vulnerability. As Nikoli�c et al.111 point out, most

existing security analysis tools only focus on a single call of a

contract but ignore the problems that may occur when called

multiple times. For the latter case, they find a new type of vulner-

ability named trace vulnerability. Contracts containing such vul-

nerabilities may: (1) be destroyed by any user; (2) be unable to

withdraw funds; (3) transfer funds to any address. To fix this

problem, the authors propose the MAIAN tool based on symbolic

execution. MAIAN accepts EVM bytecode as input, along with

user-defined analysis targets. This could confirm the existence

of trace vulnerabilities.

The security analysis considering multiple calls of a contract is

intuitively more complex, and we find that the trace vulnerability

is hardly mentioned in other literature. Therefore, we note that

future research could be further conducted with other detection

techniques for better efficiency and accuracy.

5.2.1.4. Event-ordering bugs. The event-ordering bugs evolve

from the transaction-ordering dependence described in Luu

et al.,89 where the original concept describes the case when

Figure 12. Relationships among tools for
gas consumption optimization

ll
OPEN ACCESSReview
the order of transactions influences the final states in the con-

tracts. Kolluri et al.112 define the notion of event-ordering bug.

Namely, when users call the same function in a contract, the or-

der of calling may lead to inconsistent results among the miners,

some of which may be undesirable. To eliminate such risks, the

authors combine the methods of symbol execution and fuzzing

test and propose the ETHERRACER tool, which directly works on

EVM bytecode. To achieve better performance and accuracy,

optimizations are made to avoid resource explosion during sym-

bolic execution. With the fuzzing test, ETHERRACER directly pro-

vides a counter-example to intuitively explain the existence of

bugs, i.e., two sets of inputs of different orders that result in

distinct outputs.

The event-ordering bugs are among the earliest mentioned

vulnerabilities in Ethereum, and they make the state change of

smart contracts unpredictable. We remark that there might be

applications designed in this way on purpose, such as on-chain

games, to obtain randomness. In other words, how to avoid or

utilize such event-ordering bugs is worth consideration in the

future. Moreover, as indicated by Kolluri et al.,112 how to avoid

the resource-explosion problem during symbolic execution can

also be a promising direction.

5.2.1.5. Integer bugs. Integer bugs refer to the bugs that are

related to integer arithmetic in smart contracts. Torres et al.113

first sort the integer bugs in smart contracts into: (1) arithmetic

bugs that include integer overflow, underflow, and divided by

zero; (2) truncation bugs that occur when converting longer inte-

gers into shorter ones; and (3) sign-related bugs that occur dur-

ing the conversion between signed and unsigned integers. They

then propose the OSIRIS tool for these integer bugs, based on

symbolic execution and stain analysis methods. OSIRIS accepts

Solidity or EVM bytecode as input. Compared with ZEUS
134 and

other general tools that detect multiple vulnerabilities (see Sec-

tion 5.2.1.6), OSIRIS can detect more integer bugs with the

same dataset and has a lower false-positive rate. Torres et al.

further point out that ZEUS could not detect integer bugs, so the

claimed zero false negative is not accurate.

Based on the works above, VERISMART
114 further improves the

integer bug detection’s accuracy and efficiency. The authors

point out that arithmetic-related vulnerabilities account for

more than 90% of the reported vulnerabilities. Moreover, exist-

ing tools usually come with inevitable false-positive or false-

negative reports, making manual checks necessary. To address

these two problems, the authors develop the VERISMART tool that

detects all known arithmetic bugs with almost negligible false

alarms. VERISMART accepts contracts written in Solidity as input.

It draws on the idea of the counter-example-guided inductive

synthesis (CEGIS) framework,213 by constantly searching candi-
date invariants to check whether the con-

tract meets security requirements. VERIS-

MART manages to avoid expensive

operations through a well-designed deci-

sion procedure, which also helps to

improve the scalability of the tool.
Furthermore, the authors claim that with appropriate improve-

ments VERISMART can be used to detect other vulnerabilities.

Integer bugs may result in critical consequences, since most

smart contracts involve numbers and calculations. Therefore,

in this area the detection accuracy is more important, and false

positives can be tolerated as long as false negatives are few

enough. We mention that improvements in the automation and

efficiency aspects are also attractive for future research.

5.2.1.6. General analysis. Apart from the tools specifically de-

signed to detect specific vulnerabilities, many tools are designed

to detect multiple vulnerabilities at once. We classify 26 general

detection tools according to the main technique they adopt.

Among them, as the mainstream technology used in software

analysis, symbolic execution also occupies a dominant position

in the research of security analysis tools of smart contracts.

Moreover, the fuzzing test technique is currently attracting

more attention in contract analysis. These tools are now intro-

duced in terms of the main technique they adopt.

5.2.1.6.1. Symbolic execution. Symbolic execution is

commonly used to analyze the security of computer programs.

Informally, it uses symbolic values to find out the value or range

of the inputs that trigger the execution of each part of the pro-

gram and then helps to determine whether the program works

according to the developer’s expectation.

On the one hand, symbolic execution has higher accuracy

than other methods such as taint analysis or data-flow analysis.

On the other hand, the consumption of memory grows rapidly as

the size of the target program grows, which is called a memory

explosion. Related research mainly focuses on the accuracy

rate, operation efficiency, and calculation cost in the process

of analysis.

OYENTE
89 is the first symbolic-execution-based tool for smart

contract validation. It detects four types of vulnerabilities catego-

rized by the authors. The input of OYENTE is EVM bytecode.

OYENTE is improved in Albert et al.115 so that the results can be

used to generate control-flow graphs and forms the basis of

the ETHIR115 tool. The control-flow graph generated by ETHIR

contains both control-flow and data-flow information of the input

EVM bytecode. In addition, ETHIR also generates the corre-

sponding rule-based representation for further analysis. Utilizing

OYENTE and ETHIR, Albert et al.116 designed the tool SAFEVM,

which employs the above tools to convert the Solidity program

or EVMbytecode into rule-based representation and further con-

verts it into a special C program.214 Thereafter, existing analysis

tools are applied to verify the security of the converted C

program.

Mueller117 combines symbolic execution with other technolo-

gies such as SMT-solver and taint analysis and proposes the
Patterns 2, February 12, 2021 23

ll
OPEN ACCESS Review
analysis tool Mythril,215 which works with a symbolic execution

backend LASER-Ethereum.216 Mythril accepts EVM bytecode

as input. Compared with OYENTE, it has better support from the

community and is under constant optimization. By the time of

writing (August 2020), Mythril has evolved into a security analysis

tool supporting smart contracts on various platforms derived

from Ethereum and can be used to analyze multiple common

bugs and vulnerabilities. Manticore118 is another widely used

and flexible analysis tool based on symbolic execution and sat-

isfiability modulo theories. It supports user-defined analysis by

providing several API for the access of the core engine. More-

over, it can infer concrete inputs for a given program state and

supports various computer programs in traditional environments

(e.g., x86, ARM, and WASM) other than Ethereum.

As mentioned earlier, symbolic execution only works well to

analyze short contracts due to the efficiency issues, especially

the memory explosion problem. Krupp and Rossow119 optimize

the procedure of symbol execution with the help of control-flow

graph. They propose TEETHER, focusing on the automatic detec-

tion and utilization of vulnerabilities in smart contracts. Accord-

ing to the EVM bytecode input, TEETHER generates a control-

flow graph and sorts the critical paths related to the fund transfer.

Then, by constraint solving, symbolic execution results are used

to enumerate possible attacks against these critical paths. In this

way, TEETHER provides the witness of detected vulnerabilities

while making the detection more automated. Chang et al.120

adopt a similar idea of partial analysis and propose the tool

sCompile, which only works on the critical part of a smart con-

tract involving fund transfer. Given the EVM bytecode, sCompile

first generates the corresponding control-flow graph and then

analyzes whether the transfer-related path meets the predefined

security properties. Paths are ranked according to the results

and some predefined rules. Thereafter, sCompile performs the

symbolic execution on the higher-ranked paths and finally gen-

erates an analysis report. This partial analysis solution improves

the scalability of symbolic execution.

To solve the same scalability problem, Feng et al.121 propose

the idea of summary-based symbolic evaluation and the corre-

sponding tool SMARTSCOPY. SMARTSCOPY not only supports

analyzing large contracts efficiently but also generates

counter-example attacks for the detected vulnerabilities. To

reduce the space and time overhead for large contracts, SMART-

SCOPY symbolically evaluates the methods indicated by the

application binary interface (ABI)217 of contracts, and summa-

rizes the impact of each method on the blockchain. It then con-

ducts the range splitting and pruning procedure and finally gets

to the symbolic execution. The authors argue that SMARTSCOPY

can detect the newly defined BatchOverflow bugs that other

tools previously overlooked.

In the aforementioned solutions for scaling symbolic execu-

tion,119–121 less important paths are skipped or ignored during

the analysis. Although this improves efficiency, it may lead to

false-negative results. Tsankov et al.122 propose an analysis

tool SECURIFY, which combines abstract interpretation with sym-

bolic execution. SECURIFY guarantees to traverse all possible

paths in a contract, reducing the false-negative results caused

by the incomplete symbolic execution. Its input is EVM byte-

code, along with a security model defined by a domain-specific

language. Through steps of decompiling, semantic fact infer-
24 Patterns 2, February 12, 2021
ring, and security pattern checking, it determines whether a

contract meets the predefined properties in the security model.

Moreover, the security models in SECURIFY are separate from the

analysis tool itself. Therefore, by optimizing the security model,

the accuracy of vulnerability detection could be further

improved.

From another point of view, to improve the efficiency of anal-

ysis, VERX123 adopts the concept of delayed predicate abstrac-

tion. Its main idea is to combine symbolic execution and abstrac-

tion methods: symbolic execution is used in the individual

execution of transactions while abstraction is conducted be-

tween transactions. The delayed abstract process reduces the

infinite state space brought by unlimited transactions to limited

space. VERX takes contracts written in Solidity as input, along

with the security requirement, and it outputs the predicate of

whether a contract meets the given properties.

Symbolic execution is one of the most popular analysis tech-

niques for smart contracts. Problems such as resource explo-

sion and low efficiency are discussed in many studies. This tech-

nique can be utilized to detect multiple vulnerabilities within one

invocation. Besides, there are six existing tools that support the

analysis of user-defined properties. It dramatically improves the

flexibility of security analysis. Combined with the constantly up-

dating vulnerabilities and bugs in Section 5.1.2.3, future research

may focus onmaking analysis tools compatible with newly found

vulnerabilities. A general compiler is also needed to convert the

descriptions of vulnerabilities into some languages that the anal-

ysis tools could recognize.

5.2.1.6.2. Syntactical analysis. Syntactical analysis is a

method to analyze computer programs by parsing them into a

tree and analyzing the relation of each component.

Tikhomirov et al.124 first summarize four potential problems in

the smart contract programming process: (1) security-related is-

sues; (2) function-related issues; (3) execution-related issues;

and (4) development-related issues. They design a static anal-

ysis tool, SmartCheck, which can find such problems. SmartCh-

eck converts the Solidity source code into an XML parse tree,218

then uses XPath queries219 to find the matched patterns. As the

authors point out, SmartCheck cannot guarantee accuracy or

work without manual checks. Nevertheless, this method pro-

vides an efficient way to detect potential vulnerabilities.

Later in 2019, Lu et al.125 proposed the tool NeuCheck, which

manages to improve the processing speed and complement

several detected vulnerabilities that are not fully covered by the

existing tools (e.g., SmartCheck). NeuCheck takes Solidity

source code as input, parses it into an XML parse tree by a syn-

tactical analyzer, and utilizes an open-sourced library to com-

plete the analysis.

The syntactical analysis is relatively lightweight and efficient

compared with symbolic executions, although the accuracy

cannot be guaranteed. Future research could improve accuracy

by enriching the syntax patterns. Automation is also needed and

could be realized by offering possible suggestions for contract

correction.

5.2.1.6.3. Abstract interpretation. The basic idea of abstract

interpretation is to verify whether a program meets certain spe-

cific properties according to the approximation of the program’s

semantics. Related research mainly focuses on the tool’s usabil-

ity and accessibility, and abstract interpretation in these studies

ll
OPEN ACCESSReview
usually comes with other tools, such as Horn clause resolution

and control-flow graph.

Based on their work90 that defines the full semantics of EVM

bytecode, Grishchenko et al.126 propose the tool EtherTrust,

which first abstracts the EVM bytecode as a series of Horn

clauses and then uses the resolution of such clauses to verify

the contract’s reachability. The authors also give a security anal-

ysis of the reliability of this tool. Moreover, they clarify the mech-

anism and details of EtherTrust in their later work.127

After the birth of EtherTrust, Schneidewind et al.130 claimed

that all existing tools such as EtherTrust,127 ZEUS,134 Neu-

Check,125 and MadMax106 all fail to provide provable soundness

as contract analyzers. From this point of view, they propose

eThor, an analyzer that is provably sound and tested to be prac-

tical through a large-scale experimental implementation. The

soundness is proved against the semantic of EVM bytecode

defined by Grishchenko et al.90 This tool can verify user-defined

properties described by the HoRSt language, which reduces the

difficulty of defining Horn clause-based abstractions of the con-

tract properties.

Vandal128 is an analysis framework with the idea of abstract

interpretation. It creatively converts (decompiles) the input

EVM bytecode into a logical relationship and uses the logic-

driven methods to verify the correctness and security of such a

logical relationship. Using this framework, users can easily

define security requirements and conduct security analysis.

The authors of Vandal also compare Vandal’s performance

with the aforementioned OYENTE
89 and Mythril215 in their work.

They show that Vandal and Mythril find more types of vulnerabil-

ities than OYENTE, and Valdal is the most efficient among these

three. Based on the Vandal framework, Grech et al.106 further

propose the Madmax tool to find gas-related vulnerabilities in

Ethereum contracts.

Grech et al.129 extend Vandal and propose Gigahorse, which

outperforms Vandal in both precision and completeness, capable

of decompiling over 99.98% of deployed contracts compared

with Vandal’s 88%. Gigahorse firstly decompiles EVM bytecode

into a new intermediate representation, which specifies the

data- and control-flow of the input bytecode. It then infers the

functions and variables through a set of carefully designed heuris-

tics. The authorsmention thatGigahorse could be a better depen-

dency for the previously discussed Madmax.106

As indicated by Schneidewind et al.,130 there is a trend that an

analysis tool should carry it with a formal proof of its performance

(e.g., soundness and completeness). In abstract interpretation,

the smart contracts are parsed into formal descriptions, and it

is especially suitable to generate formal proofs based on these

descriptions. We remark that this might be a promising future

research direction.

5.2.1.6.4. Data-flow analysis. In data-flow analysis, the vari-

ables’ runtime information is collected to check whether a pro-

gram meets the expected property during the execution.

Slither131 is an analysis tool based on this method. It can auto-

matically detect vulnerabilities and help developers to have a

better understanding of the developed smart contracts. Slither

converts a Solidity contract to a control-flow graph and further

compiles it to an intermediate representation named SlithIR. Uti-

lizing data-flow analysis and taint analysis techniques, the tool

can analyze large contracts infeasible for symbolic execution.
As mentioned above, the data-flow analysis consumes fewer

resources and thus supports large contracts. This is an attractive

property, since large smart contracts aremore probably to suffer

from vulnerabilities, and the overhead for the analysis of such

contracts directly influences the efficiency of contract develop-

ment. We remark that data-flow analysis is combined with other

technologies in several tools,115,129 and more combinations

could be expected in the future to improve the efficiency of

vulnerability detection.

5.2.1.6.5. Topological analysis. Topological analysis for

smart contracts is mainly based on the topological structure

graphs that illustrate the relations among multiple smart con-

tracts. Using the Solidity-parser,220 Zhou et al.132 analyze the

calling and dependency relationships in and between contracts,

based on the Solidity source code. They propose a method to

form a topological graph for developers to analyze the structure

of their contracts. In addition this method also uses symbolic

execution, syntax analysis, and other methods to find potential

logical vulnerabilities in a contract.

The topological analysis is usually combined with other

methods to obtain the final results, such as syntax analysis

and symbolic execution.132 Zhou et al.132 mention that future

research could be focused on the automatic generation of test

cases that are used to indicate the topological relationships

among functions and contracts, and how to improve the accu-

racy and alleviate the burden of manual check should be ad-

dressed in the future.

5.2.1.6.6. Model checking. Model checking is a method that

verifies whether a system meets certain properties by modeling

it into a finite state machine. Regarding the security analysis of

smart contracts, related studies mainly focus on model con-

struction, accuracy, and efficiency.

On model construction, Nehai et al.133 propose a model-

checking-based solution to check the security of contracts.

They build a three-layer model for Ethereum smart contracts:

the kernel layer, application layer, and environment layer.

These three layers correspond to the blockchain, smart con-

tract, and execution environment, respectively. They propose

a method that compiles the Solidity source code into the

NuSMV input language,221 which is friendly to model checking.

Finally, they check whether the implementation meets the given

user-defined security properties. If not, the model-checking

approach would return a counter-example, which helps refine

the implementation.

On the aspects of accuracy and efficiency, Kalra et al.134

combine the methods of symbolic model checking, abstract

interpretation, and constrained horn clauses, and propose the

ZEUS tool. They claim that the tool achieves zero false-negative

results, with a lower false-positive rate than existing tools such

as OYENTE. In addition, ZEUS works faster than OYENTE. Theoreti-

cally, ZEUS accepts smart contracts written in various high-level

languages as input (e.g., Solidity, C#, Go, and Java), and thereby

can be extended to support platforms other than Ethereum, such

as Hyperledger Fabric.7 It converts a smart contract into an inter-

mediate representation by a specially designed compiler and in-

serts checkpoints into the intermediate representation accord-

ing to user-defined rules. Finally, with verification tools based

on the constrained horn clauses, ZEUS verifies the security of

smart contracts (Definition 13).
Patterns 2, February 12, 2021 25

ll
OPEN ACCESS Review
In addition to the procedure of model checking itself, several

auxiliary components such as contract model, intermediate rep-

resentation, and corresponding compilers are also worth consid-

eration in future research.

5.2.1.6.7. Deductive proof. The aforementioned model check-

ing only works on small-scale contracts, as the number of states

in the model grows with the contract size. Nehai and Bobot135

propose a deductive proof method, where they compile the So-

lidity contracts into programs in Why3 language.209 They then

use the Hall-logic-based detection tools brought by Why3 to

analyze the properties of a contract. They also provide a

compiler that compiles the contracts written in Why3 into EVM

bytecode so that developers can directly write contracts

in Why3.

The scheme discussed above is an implementation of Why3, a

widely used programming language designed for provable

secure programs. We remark that in the future, other languages

and tools with attractive properties such as provability could be

adopted in this area to provide analysis alternatives.

5.2.1.6.8. Satisfiability modulo theories. Satisfiability modulo

theories (SMT) involve a formula whereby the parameters are

functions or predicate symbols, and the goal of SMT is to deter-

mine the satisfiability of this formula. It usually comes with other

methods, serving as an auxiliary method. However, Alt and Re-

itwießner136 have used it as the main technology to complete

the security analysis. They assert that SMT can be directly inte-

grated into the Solidity compiler to enable users to conduct se-

curity analysis while compiling and meanwhile provide

counter-examples to the vulnerabilities. However, the authors

only provide the idea and simple use cases but do not provide

a complete plan or implementation of this idea.

SMT is relatively lightweight and often used along with other

techniques,109,117,118 and the utilization of this technique alone

is less touched. For future research, the utilization of SMT could

be future considered to support the analysis of large-scale con-

tracts, and combinations of SMT and other techniques are also

worth consideration to achieve better performance (either accu-

racy or efficiency).

5.2.1.6.9. Fuzzing test. The fuzzing test has become a preva-

lent technique for bug detection in recent years. The core idea

is to generate random data as input and monitor the abnormal

behaviors of the target program under these inputs. A large num-

ber of random inputs are used. Bugs unreachable in the normal

cases could be found by random collisions in this way. Existing

research on smart contract analysis mainly focuses on the

completeness and efficiency of the analyzing process.

ContractFuzzer137 is a typical example based on the fuzzing

test to detect multiple types of vulnerabilities in smart contracts.

It first generates the random inputs according to the ABI of a

smart contract and then records the execution results of these

inputs. Thereafter it performs security analysis with predefined

test oracles, which describe the characteristics of specific vul-

nerabilities. Evaluation results show that ContractFuzzer has a

lower false-positive rate thanOYENTE, with a higher false-negative

rate under certain circumstances.

Regarding the completeness and efficiency of the fuzzing test,

He et al.138 argue that tools such as ContractFuzzer137 could not

reach some paths in depth, thereby failing to find related vulner-

abilities and causing false-negative results. On the other hand,
26 Patterns 2, February 12, 2021
tools based on symbolic execution can reach deep paths but

consume enormous resources. Combining these two methods,

the authors propose the concept of Imitation Learning-based

Fuzzer (ILF), which learns the procedure of the symbolic execu-

tion-based tools, imitating the behavior of the symbolic execu-

tion paradigm. Thereafter, the test set is generated for the Solid-

ity contract. In this way, the fuzzing test can be used to efficiently

find more vulnerabilities.

To support user-defined analysis, the tool Echidna139 is pro-

posed. It checks user-defined properties and assertions, and

further estimates the worst-case gas consumption for the con-

tracts. Echidna accepts contracts written in Solidity and

Vyper210 and is adopted by the auditing service in Groce et al.94

The fuzzing test technique has become prevalent in recent

years. However, its accuracy and soundness cannot be proved,

since it relies on a random collision to find the unexpected be-

haviors. We remark that the generation of counter-examples

could be considered in the future, and suggestions for correc-

tions are also attractive for efficient programming.

5.2.2. Auxiliary tools

Apart from the analysis tools discussed above, there are many

other tools for auxiliary purposes, such as frameworks, lan-

guages, and basic tools. The ‘‘framework’’ refers to a set of tools

or schemes that simplify or facilitate the development of smart

contracts. ‘‘Language’’ indicates the new smart contract lan-

guages, such as high-level languages with high expressivity

(e.g., Solidity) and intermediate representations used during

the process of compilation or analysis. ‘‘Basic tool’’ refers to

the basic tool for other high-level tools (e.g., the analysis tools

discussed in Section 5.2.1, and the high-level languages and

frameworks in Section 5.2.2.1 and Section 5.2.2.2). Such studies

are much more fundamental and could not be applied to the

development procedure directly.

Table 6 summarizes the auxiliary tools discussed in this paper,

where the C (resp. B) in the ‘‘Open-sourced’’ column repre-

sents that the corresponding tool is open-sourced (resp. not).

When there are multiple references on the same line, there will

be multiple C or B in the same order.

5.2.2.1. Frameworks. Frameworks refer to the auxiliary tools

available during the contract construction process, simplifying

the development of smart contracts. We have collected ten

studies on contract frameworks. Some of them help developers

achieve the privacy goal or analyze the security properties of a

contract. Others provide developers with simpler tools or familiar

languages, reducing learning costs and enabling a quick start for

beginners. Note that these goals are orthogonal and might be

achieved simultaneously by a single scheme.

The public information on the blockchain causes privacy is-

sues during the executions of smart contracts. Kosba et al.140

propose the Hawk framework. Developers can write Hawk con-

tracts and set privacy portion 4priv and public portion 4pub in the

contract, where 4priv helps to hide the private input of users while

4pub refers to the data that are allowed to be publicly disclosed.

Accordingly, a standard contract will be generated automatically

in the framework, along with cryptographic protocols that ensure

the correctness of the contract (Definition 14) and the privacy of

the users. Therefore, developers with little knowledge of the

complex cryptographic schemes can efficiently construct a pri-

vacy-preserving smart contract. Hawk implements zero-

Table 6. Auxiliary tools for smart contract construction

Refs. Year Type Main contributions Open-sourceda

140 2016 Framework Hawk framework for writing and compiling privacy-preserving smart

contracts

B

141 2018 Framework ZoKrates framework for writing and executing off-chain contracts C
142 2016 Framework a framework for verifying smart contracts by translating both Solidity

and EVM bytecode to F+
B

143 2018 framework and

high-level language

a quantitative game-theoretic framework for analysis and a

corresponding contract programming language.

B

144 2018 Framework FSolidM framework modeling smart contracts as finite state

machines, and a GUI for creating contracts

C

145 2019 Framework VeriSolid framework extending FSolidM, supporting specifying and

verifying the desired properties of a contract

C

146 2019 Framework a framework defining business smart contracts in the state machine

model, with a programming called TLA+222

B

147 2019 Framework a framework using the Event-B formal modeling for easier verification B
148 2019 Framework Takamaka framework for writing and executing smart contracts

in Java

B

149 2019 Framework FEther framework for verifying smart contracts in Coq B
150 2016 high-level language a functional programming language (Idris) library for smart contracts C
151 2017 high-level language Findel, a domain-specific language for financial purposes C
152 2018 high-level language Lolisa, a (nearly) alternative language for Solidity with stronger type

system, designed to facilitate symbolic execution and formal proof in

Coq201

B

153 2018 high-level language Flint, an inherently safer language for smart contracts with additional

restrictions and mechanisms

C

154 2019 high-level language Featherweight Solidity, a calculus for Solidity, supporting precise

definition of the behavior of smart contracts

B

155,156 2018–2019 intermediate representation

language

Scilla, an intermediate language suitable for formal analysis and

verification

CC

157 2017 basic tools a formal definition of EVM in Lem language, which can be combined

with multiple theorem provers to verify smart contracts

C

158 2018 basic tools an extension of Hirai157 with a sound program logic at the

bytecode level

C

90 2018 basic tools a semantic framework of EVM bytecode and its formalization in F+ B
159 2018 basic tools a formal definition of EVM using K framework, which can be

combined with multiple theorem provers to verify smart contracts

C

aC (resp.B) here represents that the corresponding tool is open-sourced (resp. not). When there aremultiple references on the same line, there will be

multiple C or B in the same order.

ll
OPEN ACCESSReview
knowledge succinct non-interactive argument of proof (zk-

SNARK)223,224 and other cryptographic schemes to ensure the

privacy of the smart contract. The authors also give a security

proof within the UC model.197 However, Hawk has not yet

been open-sourced (up to August 2020). Eberhardt and Tai141

adopt a similar idea to describe off-chain computation using

zk-SNARK and propose a toolbox named ZoKrates. ZoKrates in-

cludes a special high-level language to describe off-chain com-

putations and a compiler that converts the contract to a ZKP pro-

tocol. Compared with Hawk this toolbox is open-sourced, but a

formal security proof is absent.

Other than frameworks that simplify the design of smart con-

tracts, there are also frameworks aimed at facilitating the secu-

rity analysis, based on verifiable languages, game theory, finite

statemachine model, and other techniques. Smart contracts un-
der these frameworks are more suitable for security analysis,

making the analysis results more accurate and convincing, as

discussed in the following.

F+225 is a specially designed language targeted for security

analysis. Bhargavan et al.142 propose a framework that trans-

lates smart contracts into F+ to further conduct the security anal-

ysis. Concretely, it compiles (resp. decompiles) the Solidity code

(resp. EVM bytecode) into F+ and evaluates the equivalence be-

tween these two results. Such equivalence reveals the correct-

ness of the functionality (on the source code layer) and the run-

time security (on the bytecode layer). However, the authors

only provide several simple examples, and a complete scheme

for the compilation and decompilation is not provided.

Smart contracts usually involve multiple parties with conflict-

ing interests, whereby game theory works well. Chatterjee
Patterns 2, February 12, 2021 27

ll
OPEN ACCESS Review
et al.143 describe smart contracts as a two-party game and

further propose a quantitative stateful game-theoretic frame-

work. The core technique is the refinement of abstraction, which

is used to avoid state space explosion during the modeling of

two-party games. A simplified contract languagewithout loop in-

structions is also proposed to support concurrent instructions of

the parties. It is used in the game-theoretic model, and the au-

thors claim that it can be translated into Solidity. However, the

corresponding compiler is not provided in their work.

Besides, the state machine can also be applied to describe the

state transitions in smart contracts. Mavridou and Laszka144 re-

gard the smart contracts as finite state machines and propose

the FSolidM framework to design smart contracts efficiently. Be-

sides, they provide four plugins that can be used to detect known

vulnerabilities (e.g., re-entrancy and transaction-ordering depen-

dence) on the generated smart contracts. In their later work145 the

authors propose the VeriSolid framework, which extends the sup-

ported Solidity expressions and updates the code generator.

Formal operational semantics are also provided in the latter

work. VeriSolid enables developers to describe the security re-

quirements and verifies whether the generated contract meets

such targets. Xu and Fink146 also apply the state machine model

on smart contracts but focus on the smart contracts in the busi-

ness field. They propose the Temporal Logic of Actions (TLA)

model, written in TLA+ language,222 to describe the properties

that a contract must satisfy. Finally, the TLC (Temporal Logic

model Checker)146 is also proposed to ensure that the contract

meets the user-defined properties. However, the state machine

model may fail to describe certain smart contracts because of

the space explosion problem, and this could be a research direc-

tion for future optimization.

Apart from those popular and well-known models, there are

another two models useful in contract designing frameworks.

Banach147 proposes a framework using the Event-B model,226

which is designed to describe and verify the discrete event sys-

tem. With this model and framework, smart contracts can meet

specific properties in the designing layer, and in turn the security

analysis becomes relatively easier. However, this work needs

further improvement on completeness and syntactic complexity

to be brought into practice.

There are also studies introducing general programming lan-

guages into the context of smart contracts. Spoto148 proposes

the framework Takamaka that implements Java as the program-

ming language. In Takamaka, Java programmers can easily

develop smart contracts with familiar tools. Takamaka specially

designs a Storage class for smart contracts and a gas-computing

mechanism related to Ethereum. To avoid malicious programs or

abused functions in Java, it alsomaintains a whitelist of permitted

functions for smart contracts. The framework also allows clients

to use Java VirtualMachine (JVM) to run smart contract bytecode,

taking advantage of JVM’s excellent bytecode execution rate and

garbage collection mechanism. However, this also makes it

incompatible with the state-of-the-art Ethereum. In other words,

it requires a hard fork to take effect. Moreover, the framework is

still under development and not yet released.

Frameworks for the construction of special smart contracts

are quite useful and may relieve programmers of security con-

cerns. The state-of-the-art solutions usually include new lan-

guages and compilers that simplify the design procedure or facil-
28 Patterns 2, February 12, 2021
itate security analysis. However, some existing frameworks are

in the proof-of-concept stage only while others may lack formal

proofs on their security or privacy abilities. We note that with a

formal language and other rigorous methods such as crypto-

graphic schemes, a framework with certain provable properties

may be introduced in the future.

5.2.2.2. Contract languages. Researchers for contract lan-

guage are devoted to improving the security of smart contracts

(Definition 13), including avoiding common errors and making it

more suited for security analysis. Specifically, four schemes

restrict the language’s functionalities so that errors will be less

probable to occur. Another four studies focus on the semantic

abstraction and (or) modifications on the original language to

facilitate vulnerability detection. In this section, we summarize

the contract languages proposed in these studies.

Most languages for contract programming, e.g., Solidity and

Serpent, are used for procedural (or imperative) programming,

where the states in the contract are changed by multiple state-

ments, while in functional programming programs are composed

of multiple functions. Pettersson and Edström150 argue that

functional programming can help to avoid many common errors

during construction. Besides, it is easier to apply detection tools

in contracts written in functional languages. Accordingly, the au-

thors propose an Idris227 library (Idris is a functional program-

ming language), taking advantage of its dependent type. They

further design a compiler from Idris to Serpent to illustrate the

feasibility of their conclusion.

In addition to functional programming languages, Biryukov

et al.151 propose a domain-specific language to improve the se-

curity of contracts under specific scenarios. Findel151 is a lan-

guage for financial contracts. By separating the contract

description and execution methods, financial contract devel-

opers can simply pay attention to the contract contents without

concerning about how the contracts are executed. The authors

argue that Findel can be used in common financial derivatives,

and they conduct a test of this language on Ethereum.

Lolisa152 is an alternative language that adopts a stronger

static type system aimed at making the contract more suitable

for security analysis (particularly symbolic execution). For the

specification of Loisa, a formalization of the syntax and seman-

tics of Solidity is proposed by Yang and Lei.152 It is claimed

that Lolisa includes nearly all expressions of Solidity, and thus

Lolisa and Solidity could be converted to each other easily.

Moreover, it is more convenient to do symbolic execution on

contracts written in Lolisa. The authors also propose an inter-

preter that converts Lolisa to Coq201, a specially designed lan-

guage for semantic verification. Taking Lolisa as the interme-

diary, the security of smart contracts in Solidity can be easily

analyzed and proved with the help of Coq. The subsequent

work FEther149 illustrates the detail of the verification of smart

contracts with the combination of Lolisa and Coq. A debugger

is also provided for programmers to debug target contracts

in Coq.

Based on a similar idea to Lolisa, Crafa et al.154 define the

formal semantics in the core of Solidity and propose a high-level

language named Featherweight Solidity. The behavior of the So-

lidity contract could be accurately defined with it. In this way,

analysis tools can directly analyze contracts in Solidity without

converting them to EVM bytecode. In addition, the analysis

ll
OPEN ACCESSReview
results show that there are defects in the type system of Solidity.

Specifically, they conclude that runtime type errors are unavoid-

able in current systems.

Apart from the semantic abstraction and definition of the orig-

inal language, other studies focus on the design of intermediate

languages that are useful in contract compilation and verifica-

tion. Sergey et al.155,156 point out that most high-level languages

sacrifice verifiability to improve their expressivity. In other words,

the security verification of contracts in these languages is more

complex than those in low-level languages (e.g., bytecode). To

address this problem, they propose an intermediate language

SCILLA. High-level languages can be compiled into SCILLA for se-

curity analysis before being further compiled into EVMbytecode.

Its design is based on the automaton model, and it separates the

modules of communication, calculation, and state transition.

Such modulation enables the analysis tool to work in a focused

manner. The contract compiled into SCILLA will be further con-

verted to Coq201 to utilize the powerful analysis function of

Coq. However, the scheme has not yet been fully implemented.

Adding security mechanisms to the original programming lan-

guage also helps avoid potential security issues since Solidity

only focuses on the expressivity and completeness aspects

but does not consider the convenience of security analysis.

Schrans et al.153 propose a high-level language, Flint, which:

(1) adds a permission mechanism to limit undesirable function

calls; (2) optimizes the fund-related operations to ensure safe

transfer; (3) introduces an unmodifiable property to limit the

modification of key states; and (4) uses the same application bi-

nary interfaces as Solidity to ensure that contracts written in

these two languages can interact with each other. These fea-

tures reduce the difficulty of designing contracts and corre-

sponding analysis tools. The authors also provide an analysis

tool that performs syntax analysis on Flint contracts and a

compiler that compiles the contract into EVM bytecode.

As we have mentioned in Section 3.1 and Section 4.2.2, a key

difference between Bitcoin and Ethereum is their support for

high-level languages. An expressive contract language could

greatly save learning efforts for new programmers. On the other

hand, several schemes aim to facilitate the security analysis of

smart contracts through some intermediate representations

and tools. All of these languages require a proper compiler to

generate EVM bytecode correctly. We remark that a formal proof

of the correct compilation could be considered to illustrate the

soundness and completeness for future research. Moreover,

user-friendly interfaces are also important to facilitate the devel-

opment of smart contracts.

5.2.2.3. Basic tools. Basic tools refer to certain basic theories

used to develop higher-level tools (e.g., security analysis tools,

high-level languages, frameworks). Such research usually in-

volves the formal definition of the underlying infrastructure

such as virtual machine and bytecode.

There are three studies that adopt different tools to define EVM

formally. Such formal definitions are the key to designing con-

tract analysis tools. Hirai157 gives a formal definition of EVM in

the Lem language that can be combined with analysis tools (or

framework), such as Coq201 and Isabelle/HOL,228 to check

EVM’s property. The author further proves some security proper-

ties of EVM with Isabelle/HOL. Amani et al.158 extend Hirai’s

work and propose the sound program logic for EVM so that
the correctness of a smart contract can be verified with Isa-

belle/HOL. They also prove the correctness of their program

logic in their work. Based on Hirai,157 Hildenbrandt et al.159 pro-

pose KEVM, another formal definition of EVM under theK frame-

work.229 KEVM is unambiguous, readable, and executable,

which can be used as a theoretical foundation for formal analysis

of smart contracts. As an example, the authors briefly describe a

KEVM-based gas analysis tool and a domain-specific language

for analyzing the application binary interfaces of smart contracts.

Furthermore, with specially designed interpreters, KEVM passes

the official test suite230 provided by the Ethereum community.

The results show that KEVM is more efficient than the EVM

defined by Hirai157 and can detect more vulnerabilities.

There are also studies formally defining EVM bytecode, which

contribute to designing high-level languages and analysis tools.

Grishchenko et al.90 argue that the semantics in Ethereum Yel-

low Paper3 are incomplete and do not follow the standard rules

of definition. They are the first to define the small-step semantics

of EVM bytecode. They use the same F+ language as the pre-

ceding work,89 and their complete semantic framework of EVM

serves as the theoretic foundation of F+-based analysis tools.

As we have observed, there are six studies giving formal def-

initions of EVM and bytecode semantics utilizing different spec-

ification languages. However, the definitions of EVM and byte-

code semantics are illustrated independently, and their

relationship and correspondence are not described formally.

Therefore, for future research, composing these definitions or

universally defining these basic tools to support the develop-

ment of higher-level theories could be further investigated.
6. EXECUTING SMART CONTRACTS

In 2017, Buterin231 gave a speech on the design challenges of

smart contract mechanisms, focusing on the security and appli-

cation aspects. In this section, we list and group the studies on

execution mechanisms of smart contracts, most of which aim

at improving privacy and performance. Before introducing these

studies, we first summarize the deficiencies in existing contract

executionmechanisms in the following, taking Bitcoin and Ether-

eum as representatives. Such defects may hinder several useful

applications frombeing adopted, which are sensitive to the delay

and privacy of on-chain transactions. We remark that these de-

ficiencies mainly occur in the public blockchains (Definition 1),

while if these issues are handled properly both public and con-

sortium blockchains will benefit.

(1) Forced disclosure of smart contract contents. Although

pseudonyms are used in most blockchain systems to pro-

tect users’ privacy, due to the inherent execution mecha-

nisms of blockchains the contents of smart contracts are

still forced to be disclosed in public so that miners can

execute the contracts and all nodes can agree on the final

states. To fully guarantee anonymity, some blockchain

systems even directly remove the smart contract function-

ality, e.g., Zerocash,232 But this is not an ideal strategy,

since smart contracts are quite attractive for several appli-

cation scenarios if the privacy concerns are eliminated.

(2) Low processing rate. In most blockchains a transaction

must be verified, executed, and packaged by all miners
Patterns 2, February 12, 2021 29

ll
OPEN ACCESS Review
before taking effect, but this duplicated and resource-

consuming strategy puts huge limitations on the process-

ing rate. Technically, the processing rate is subject to

basic parameters of a blockchain, such as the block

size and time interval between blocks. Although it is not

difficult to modify these parameters, new problems233

may arise afterward. For example, a bigger block size

would consume more space, and a smaller interval may

result in frequent and undesirable forks. Therefore, exist-

ing smart contract platforms are not suitable for applica-

tions with high demands on the processing rate.

(3) Limited contract complexity. To ensure the liveness (Defi-

nition 4) of a blockchain, mechanisms to prevent DoS at-

tacks are introduced. For instance, Bitcoin only supports

a limited set of operations, which essentially prevents the

occurrence of endless loops. Ethereum introduces the

gas mechanism that limits the number of instructions in

a single transaction. On the one hand, these protective

mechanisms guarantee the liveness while on the other

hand, they also limit the possibility of executing complex

smart contracts on-chain. In other words, the applications

with sophisticated operations and heavy overheads are

not applicable in the existing blockchains.

As mentioned in Section 4, script-based blockchains are only

suitable for implementations of simple financial-related con-

tracts. Such systems are used more as a public ledger than a

smart contract platform in practice. Therefore, most related

studies focus on the improvement of Turing-complete block-

chains and are divided into three categories as follows.

(1) Private contracts with extra tools. To avoid revealing sen-

sitive information in a contract, auxiliary tools such as ZKP

(Definition 16) and TEE (Definition 17) are adopted in 13

studies. These schemes are aimed at solving the forced

content disclosure problem mentioned above, and at

the same time may help to mitigate the problems of pro-

cessing rate and complexity, as we discuss in Section 6.1.

(2) Off-chain channels. In these schemes, the executions of

contracts are moved off-chain to avoid the low transac-

tion-processing rate and high confirmation delay. Mean-

while, such methods also protect the privacy of contract

contents to some extent. We group the existing ten off-

chain schemes into payment channels and state channels

in this review, as we discuss in Section 6.2.

(3) Extensions on core functionalities. The core functionalities

here refer to the way of processing and executing smart

contracts in a blockchain. The improvements on such

functionalities usually require a (hard) fork (Definition 6),

or even an alternative blockchain would be proposed,

either increasing the functionalities a smart contract could

achieve or improving the performance of the blockchain.

Some are less relevant to smart contracts, e.g., SegWit,234

side-chain,235,236 and Sharding.237 Such schemes are

omitted in this paper, and we focus on the nine improve-

ments and extensions on contract executionmechanisms.

We summarize the schemes discussed in this section in Table

7 according to the above classification. In the ‘‘Theory’’ column,
30 Patterns 2, February 12, 2021
C denotes that the scheme has both description and its corre-

sponding security proof while H denotes that the scheme has

only description without a security proof; in the ‘‘Implementa-

tion’’ column, C means that the scheme is implemented and

open-sourced while H means that the scheme is implemented

but not open-sourced, andB denotes that the scheme is not im-

plemented.We remark that the smart contracts discussed below

refer to those written in Turing-complete languages if not other-

wise claimed.

6.1. Private contracts with extra tools
In most mainstream public blockchains, smart contracts are

stored on-chain so that everyone can see and validate their con-

tent. In other words, to process a transaction that calls a smart

contract, all miners will operate accordingly to the transaction

and contract and finally agree on the execution results. Such a

mechanismmay cause privacy issues, e.g., a business company

may be curious about its competitor’s daily sales and big orders.

This will prevent the implementation of certain business con-

tracts.

To handle the privacy issues in smart contracts, cryptographic

schemes or hardware tools are introduced, and we call such so-

lutions private contracts with extra tools. In the following, we

group them into private contracts based on SMPC (Definition

15), ZKP (Definition 16) and TEE (Definition 17), and discuss

them in Section 6.1.1, Section 6.1.2, and Section 6.1.3, respec-

tively.

6.1.1. Secure multi-party computation

The goal of SMPC (Definition 15) is similar to that of smart con-

tracts, both involving multiple parties that do not trust each other

and generate correct execution results. To some extent, SMPC

could be viewed as a special form of smart contracts, apart

from the fact that SMPC is almost conducted off-chain. When

combined with smart contracts, SMPC could improve the pri-

vacy of contract contents and alleviate the problems caused

by the high latency and low throughput in a blockchain. Related

studies focus on the privacy, fairness, and correctness of block-

chain-based SMPC, as in the following.

Some researchers are dedicated to improving data privacy

with the help of SMPC. Enigma160 is a privacy-preserving

computation platform without a trusted third party. It records

the hash of crucial data on-chain to guarantee integrity and uti-

lizes SMPC to conduct private computation. In this way, no

one gets any extra information except its inputs and outputs, ac-

cording to the privacy of SMPC.

In SMPC, fairness is another non-negligible problem. Choud-

huri et al.161 regard blockchain as a tamper-resistant public

bulletin board that anyone can write on. They adopt the witness

encryption (WE) method to solve the fairness problem in SMPC.

According to their scheme, all participants will get their desired

outputs, or no one gets them at the end of the protocol.

From another aspect, Sánchez162 combines SMPC with

proof-carrying code238 and proposes Raziel to guarantee the

correctness of smart contract codes and their executions. In Ra-

ziel, SMPC guarantees the correctness and privacy of contract

executions, and proof-carrying code ensures the correctness

and verifiability of the contract codes. Raziel also adopts non-

interactive ZKP to prevent the proof-of-code from revealing extra

information.

Table 7. Execution schemes of smart contracts

Classification Refs. Scheme namea Year Keywords Theoryb Realizationc

Smart contracts

with auxiliary

tools

secure multi-party

computation

160 Enigma 2015 blockchain-based multi-party computation H C
161 – 2017 fairness of multi-party computation C H
162 Raziel 2018 private contracts through multi-party

computation

C B

zero-knowledge

proof

6 Quorum 2016 public and private contracts H C
140 Hawk 2016 integrating zk-SNARK into contracts C B
141 ZoKrates 2018 zk-SNARK toolkit for private contracts H C

trusted execution

environment

161 – 2017 multi-party computation through TEE C H
163 – 2018 contract privacy in Hyperledger Fabric C H
164 PDO 2018 private data object C C
165 Ekiden 2019 general private contracts based on TEE C H
166 FASTKITTEN 2019 complex Bitcoin contracts C H
167 ELI 2019 Enclave-Ledger interaction C C
168 Teechain 2019 settlement of Lightning Network C C

Off-chain

channels

payment channel

network

169 – 2015 duplex payment channel network (BTC) H B
25 RSMC and

HTLC

2016 Lightning Network (BTC) H C

170 – 2016 comparison of payment channel

network (BTC)

H B

171,172 –, Bolt 2016–2017 anonymous payment channel

network (BTC)

CC BH

173 Fulgor and

Rayo

2017 concurrency of payment channel

network (BTC)

C H

59 AMHL 2019 payment channel against wormhole

attacks (BTC)

C H

174,175 –, Sparky 2015–2016 Lightning Network (ETH) HH BC
176 Raiden 2017 advance payment channel network (ETH) H C
177 PERUN 2017 virtual payment channel (ETH) C C

state channel

network

178 – 2018 state channel for online poker C C
179 – 2018 general state channel C B
180 Sprites 2017–2019 worse-case time optimization C H
181 – 2019 multi-party virtual state channel C B
182 – 2018 conflicts in state channel H H
183 – 2018 protecting honest party H C
184 – 2019 state assertion channel H C
185 PISA 2019 state channel outsourcing C C

Extensions

on core

functionalities

extending opcode 186,187 Bitcoin

covenants

2016–2017 limiting the spending of UTXOs HH BH

188,189 – 2019–2020 moving smart contracts cross-chain HH HH

improving security 190 PCSCs 2018 proof-carrying smart contracts H B

improving

efficiency

and privacy

191 Arbitrum 2018 one-step proof of execution C C
192 YODA 2018 complex contracts without validation C H
193 ZEXE 2018 private execution of arbitrary contracts C C
194 ACE 2020 parallel execution of interactive smart

contracts

C H

a– denotes the proposed scheme is not named in the literature.
bC denotes the scheme has description and security proof, H means the scheme has description without security proof.
cC denotes the scheme is implemented and open-sourced, Hmeans the scheme is implemented but closed-sourced, B represents the scheme is

not implemented.

ll
OPEN ACCESS

Patterns 2, February 12, 2021 31

Review

ll
OPEN ACCESS Review
Smart contracts in the format of SMPC protocols are more

flexible and not constrained by the inherent execution mecha-

nisms of blockchain. These schemes are usually applied to the

application layer that does not rely too much on the execution

mechanisms. They only utilize the existing blockchain functional-

ities to ensure the safety or fairness of the protocol. For example,

participants may upload some witnesses or proofs to make sure

everyone behaves honestly. Most procedures are conducted

off-chain. In this way, the contract contents are only disclosed

among participants, making the proceduremore privacy-preser-

ving than normal contracts.

The trade-off between best- and worst-case complexity is a

heated topic regarding the SMPC-related schemes. Moreover,

efficiently compiling general functions into SMPC-based smart

contracts and off-chain protocols is still an open problem worth

consideration in the future.

We remark that the SMPC-based solutions require all partici-

pants online to complete the computation protocol, which may

be unrealistic in some cases.Moreover, existing SMPC schemes

are featured with high computational and communication

complexity, which can be new obstacles for smart contracts to

be widely adopted. In comparison, the solutions with ZKP

described below could slightly reduce the overhead of commu-

nication.

6.1.2. Zero-knowledge proofs

ZKP (Definition 16) is a popular and relatively mature crypto-

graphic technique to protect users’ privacy. Several efficient

non-interactive solutions are proposed in recent years, which

are quite suitable for blockchain and smart contracts. For

example, zero-knowledge succinct non-interactive arguments

of knowledge (zk-SNARK)223,224, whereby the correctness of

computation can be verified in a non-interactive way with fewer

required resources, are widely used in blockchain. Related

studies mainly focus on improving the transparency of the ZKP

to enable developers to write private contracts even when they

do not know the detail of ZKP protocols.

Quorum6 is a typical example to protect the privacy of contract

contents using ZKP. It is derived from Ethereum, while the smart

contracts are divided into public and private contracts. The pub-

lic ones are the same as those in Ethereum and the private ones

interact among contract participants using zk-SNARK and up-

date corresponding states without revealing extra information,

thus avoiding privacy leakage during the contract execution pro-

cedures.

Rather than propose an alternative system, two studies

attempt to automatically integrate the ZKP protocol into the

Ethereum smart contracts within the design process. The

Hawk140 framework is a typical example that applies zk-SNARK.

It automatically generates smart contracts and the correspond-

ing protocols that guide the users to protect their legitimate

rights and interests during the contract execution. Eberhardt

and Tai141 also present a toolkit named ZoKrates based on zk-

SNARK for private contracts. Different from Hawk, the contracts

constructed in ZoKrates are mostly executed off-chain. ZoK-

rates comes with a high-level domain-specific language, which

is used to describe the off-chain computation. The authors

also provide a compiler to generate transactions that submit

the final results on-chain. Using the specialized language and

compiler provided by ZoKrates, developers could easily and
32 Patterns 2, February 12, 2021
implicitly write a private contract without understanding

zk-SNARK.

We remark that the schemes mentioned above are irrelevant

to smart contracts’ core execution mechanisms (e.g., virtual ma-

chine). These schemes apply ZKP to the underlyingmechanisms

to protect privacy. We leave relevant solutions to Section 6.3.3.

Although the ZKP-based execution schemes effectively hide

the contents of smart contracts, they inevitably introduce more

communication and storage overhead, increasing miners’

burden for validating and executing the transactions. Besides,

ZKP schemes such as zk-SNARK require a trusted setup, and

how to remove such a setup remains a challenge.

From this point of view, Bulletproofs239 that works without a

trusted setup arises. This is more consistent with the idea of

blockchain that removes the trusted third party, and it has

become a hot research direction for ZKP application on the

blockchain. However, we remark that it is more fundamental

and independent of the execution scheme itself. Inspired by

Eberhardt and Tai,141 we point out that future research may

also focus on amore practical perspective by making such com-

plex protocols transparent for developers and provide some

formal proofs about the correctness and privacy of the gener-

ated contracts and protocols.

To sum up, although ZKP-based private contract schemes

avoid the massive multi-round communication introduced by

SMPC, problems in the aspects of efficiency, storage, and

trusted setup are still extant. The contract execution schemes

based on TEE (Definition 17) increase efficiency by adding new

assumptions on the hardware security, i.e., assuming TEE’s reli-

ability, as discussed below.

6.1.3. Trusted execution environment

Taking advantage of the TEE (Definition 17) hardware, such as

Intel SGX240 and ARM TrustZone,241 the privacy of contract con-

tents can also be guaranteed. Such TEE usually provides proofs

of correct executions, revealing limited information about the

communications among the users and contracts. Relevant

studiesmainly focus on its practical applications, such as execu-

tion efficiency and weakening the dependence on TEE’s spe-

cific types.

TEE solves some problems that are difficult for traditional

cryptographic schemes, such as privacy and fairness. Several

studies are discussing ways to protect contract contents with

TEE. Brandenburger et al.163 introduced SGX into Hyperledger

Fabric to enable trusted private executions of smart contracts.

In their scheme, efficiency is sacrificed to some extent due to

the employment of extra hardware. However, since the effi-

ciency of Hyperledger Fabric has been greatly improved

compared with other public blockchains (e.g., Ethereum), such

loss is acceptable. Almost simultaneously, Bowman et al.164 pro-

posed the so-called private data objects (PDO), which utilizes

TEE to execute contracts and update the state. However, PDO

is designed for consortium blockchains, and thus many security

threats are excluded from consideration in their work.

TEE could also be used to solve the problem of fairness in

SMPC. Choudhuri et al.161 propose a solution to achieve fairness

in SMPC that combines TEE with blockchain. However, their

scheme only achieves one-time SMPC. That is, each invocation

requires a new setup so it is only suitable for some special con-

tracts, for example, one-time lottery and voting. Enclave-Ledger

ll
OPEN ACCESSReview
interaction (ELI)167 is a general blockchain-based SMPC solu-

tion, which converts the multi-step computation into a protocol

involving three parties: a public ledger (or blockchain), TEE,

and a host application. The scheme only uses the blockchain

as an underlying component but puts no requirement on the

mechanism of blockchain.

To address the privacy and fairness issues in Bitcoin, Tee-

chain168 is proposed to prevent malicious behaviors during the

establishment and settlement of Bitcoin Lightning Network.25

In Teechain, TEE serves as the trusted root to ensure all parties’

legitimate rights and interests during the execution of the off-

chain payments.

Actually, the introduction of TEE brings forth a new security

assumption, i.e., assuming the adopted TEE hardware is secure.

Ekiden165 tries to weaken this assumption to some extent. In Eki-

den, executions of transactions aremoved into TEE, and the TEE

provides the proof of the correct execution. In this way, no one

except the participants knows the content of a contract, and

each participant only knows the inputs and outputs of the private

computation. Since it does not put limitations on the specific

types of TEE, Ekiden avoids trusting a single TEE provider. Be-

sides, Ekiden also manages to optimize the processing rate in

TEE. While keeping the contents private, it handles thousands

of transactions per second, nearly 100 times more than that in

Ethereum.

TEEcould alsobeused tosupport complex smart contracts that

are infeasible otherwise. FASTKITTEN
166 is a typical TEE-based

scheme that extends Bitcoin to support arbitrary smart contracts

by focusing on the efficiency of off-chain contract execution. In

FASTKITTEN, smart contracts are executed in an operator’s TEE,

where the operator works as a miner so that it obtains no trust

from the others and will not learn anything about the contract.

Checkpoints are introduced to improve the efficiency of validation.

Anyone can start fromany checkpoint to calculate the final state in

the blockchain. Besides, FASTKITTEN adopts the mechanisms of

challenge-response and deposit-penalty, where the former is

used to identifymaliciousbehaviors and the latter isused tocharge

a penalty if someonemisbehaves. In thisway, rational participants

will behave themselves and honest ones can always get their

deserved money. FASTKITTEN also describes the process of off-

chain transactions and further provides a formal security proof.

By assuming the reliability of TEE hardware, the efficiency loss

of contract executions caused by the complex and heavy crypto-

graphic schemes is avoided. However, this strategy increases the

cost of contract executors (or miners), since they have to update

their hardware and validate the proof of correct executions before

packaging the transactions. In addition, the assumption of TEE

being always secure might not be realistic because there can be

bugs and vulnerabilities in the TEE equipment, which will bring

in new points of attack. For example, the latest study242 shows

a subversive attack for SGX. Moreover, there are concerns that

device providers may insert a backdoor into their products.

Therefore, designing execution schemes that are irrelevant to

specific hardware types is a problem worthy of consideration.

For concrete applications, the balance between on- and off-

chain overhead could be considered since on-chain affairs

take more time. Off-chain operations put other requirements

such as bandwidth and storage on the executors. Moreover,

compilers to automatically generate TEE-based protocols given
general function descriptions are still absent, which could be a

promising direction for future research.

6.2. Off-chain channels
To resist various attacks against blockchain (e.g., DoS attacks),

smart contracts inevitably have bottlenecks in transaction-pro-

cessing performance. Therefore, to improve the efficiency, one

solution is to execute contracts in off-chain channels and only

release the settling transactions on the blockchain. This also

hides the contract contents and the details of users’ behaviors

during data communication. Off-chain channel schemes mainly

describe the interactive protocols among multiple parties,

ensuring that none of them bears the unnecessary loss, and

the misbehaving ones receive penalties accordingly. We divide

the state-of-the-art off-chain schemes into payment and state

channels, and conclude that related research mainly focuses

on the security, fairness, efficiency, and feasibility issues. In

the following, Section 6.2.1 interprets payment channels and

Section 6.2.2 discusses the state channels.

6.2.1. Payment channels

We have discussed the micropayment channel protocol in Sec-

tion 4.1.3, which derives many advanced payment channel

network (PCN) schemes. Most of these schemes are aimed at

achieving fair and efficient payments off-chain. In the following,

we will introduce PCN schemes in Bitcoin and Ethereum,

respectively, in Section 6.2.1.1 and Section 6.2.1.2. Themain dif-

ference between the two categories is due to the transaction

model (Definitions 10, 11) and contract language, and the design

of PCN schemes in Ethereum is more convenient because of the

general-purpose language.

6.2.1.1. Payment channel networks in Bitcoin. Since Bitcoin

only supports limited operations in smart contracts, off-chain

protocolsmust be carefully designed. The initial design of themi-

cropayment channel only supports one-way payment (see Sec-

tion 4.1.3). In other words, a receiver cannot use the same chan-

nel to send money back to the sender. For this issue, five

solutions for bidirectional channels are proposed. Specifically,

two studies try to realize the functionality of such off-chain pay-

ments and the other three schemes improve the preceding

schemes for privacy or security issues, as in the following.

Based on the micropayment channel20 scheme, Lightning

Network25 is proposed. It is composed of many bidirectional

payment channels and enables the duplex transfer of funds be-

tween two users without a direct channel.

To establish bidirectional channels, the RSMC25 has been

introduced. Informally, in RSMC, two parties generate a deposit

transaction that collateralizes the funds to a multi-signature

address. They then sign the refund transactions as a refund

commitment, which includes an expiration time. The party that

broadcasts the refund transaction first is restricted to claim the

refund after the expiration time, while the other party can imme-

diately get a refund, thereby preventing the deliberate refund

operation. The refund commitments are then signed and broad-

cast. Thereafter, both parties update the payment value off-

chain. This will involve multiple public and private key pairs

and addresses. Each time a new transaction is generated, the

two parties have to send the old key pair to the other, which is

regarded as an agreement to accept the new transaction and

give up the old one. During the update process, if either party
Patterns 2, February 12, 2021 33

Figure 13. Using a hashed timelock contract (HTLC) to establish a Lightning Network25

ll
OPEN ACCESS Review
broadcasts the old refund commitment, the other can get all the

deposited funds.

In payment channel networks, there are cases when two users

without a direct channel want to perform an off-chain payment.

In this situation, an HTLC is used. We show a brief description

of HTLC in Figure 13,25 where there is a path from P1 to P4

(P1/P2/P3/P4). To acquire ₿x from P1, P4 selects a random

number r and sends its hash value y =FhashðrÞ to P1. Next, P1

generates an HTLC contract HTLC3tðP1; P2; y; x + 2dÞ, where

the subscript 3t stands for the timelock (as discussed in Section

4.1.3), and d is the fee that each intermediary charges. P2 (resp.

P3) sends their HTLC to P3 (resp. P4) in a similar way, where the

lock time decreases to ensure that the intermediaries behave

honestly. P4 uses r to claim the ₿x in HTLCt, and passes the r

to P3, and r is passed through the channel in the same manner.

All rational intermediaries have themotivation to behave honestly

or they will lose their money.

The Lightning Network is the combination of RSMC and HTLC

and is one of themost popular PCN solutions. It is implemented in

many languages, such as C language243 and Scala language.244

We remark that all steps in Figure 13 are off-chain (we note that

the initialization step is not illustrated in this figure), and the only

on-chain procedures occur during the settlement and dispute

phase. Therefore, the Lightning Network reduces the frequent

small transactions on-chain, avoids the transaction delay, and

somehow improves the blockchain’s throughput.

Almost simultaneously, Decker and Wattenhofer169 pro-

posed another duplex micropayment channel scheme, which

uses a diminishing timelock to prevent the other party from

aborting. In Figure 14A,169 we give an illustration of the one-

way micropayment channel described by Hearn,20 and in

Figure 14B169 we show the method to update the channel

with the reducing timelock. The branch with a smaller time

lock t can be confirmed earlier in the system so that the values

in the bidirectional channel are updated. With this method, the

duplex micropayment channel is shown in Figure 14C.169

Firstly, both parties set the maximum and minimum value of t,

additional branches per node n (n= 1 Figure 14), and maximum

invalidation depth d (d = 3 Figure 14). Thereafter, the two parties

use the duplex micropayment channel pair in the first line to

conduct the payments. When the fund in one of the channels

is exhausted, both parties update the channel, reset the initial

funds, and decrease the value of t in order, as shown in the sec-

ond and third lines. Similarly, by connecting channels end by
34 Patterns 2, February 12, 2021
end, such duplex payment channels can also be extended

into a PCN.

As depicted in Figure 14, most procedures in the duplex mi-

cropayment channel are also conducted off-chain. This scheme

serves a purpose similar to that of the Lightning Network,

improving throughput and reducing transaction fees. The two

bidirectional payment channel schemes25,169 are compared

and analyzed in McCorry et al.170 in terms of on-chain privacy,

operational overheads, and outsourcing.

From another point of view, the above two PCN schemes

cannot fully protect users’ privacy. For example, the hash

lock in HTLC could be used to track the participants on the

same path. Heilman et al.171 adopt blind signature245 and

realize a fair, anonymous, and off-chain exchange of BTC

with vouchers issued by an untrusted third party. This scheme

is compatible with both Lightning Network and the duplex mi-

cropayment channels described above. Green and Miers172

propose an opcode OP_BOLT to achieve anonymity in three

forms of micropayment channels (one-way, bidirectional, and

PCN). However, this solution is only applicable to platforms

that are born with anonymity (e.g., ZeroCash232) or other cryp-

tocurrencies that support coin mixing. Intuitively, the solutions

of both Heilman et al.171 and Green and Miers172 require a soft

fork (Definition 7) to take effect.

Some researchers point out that the aforementioned PCN so-

lutions could not handle the concurrency of off-chain payments

well, which might cause problems such as transaction blocking

or conflicting. Malavolta et al.173 propose two protocols for the

concurrency issues in PCN, namely, Fulgo and Rayo. Fulgo

comes with formal provable privacy within the UC model and

is compatible with Bitcoin’s script language. When a conflict oc-

curs, all the conflicting transactions will be canceled and resent

after a certain delay to prevent permanent blocking. Rayo is

another scheme guaranteeing that at least one of the payments

will be completed, yet it to some extent sacrifices privacy

compared with Fulgo. The authors also propose an advanced

multi-hop HTLC, which introduces randomness to the timelock

and combines ZKP (Definition 16) to avoid privacy leakage of

the routing information.

In terms of the fairness in PCN, based on Fulgo and Rayo,173

Malavolta et al.59 propose a new PCN protocol that is secure

againstwormhole attack,whereby anadversary that controlsmul-

tiple intermediaries can exclude the honest nodes in the path by

directly passing the random preimage r to other corrupted nodes.

A B

C

Figure 14. Duplex micropayment channel
with maximum time tmax = 100, minimum
time tmin = 99, additional branches per node
n = 1, maximum invalidation depth d = 3
Figure reprinted with permission from Decker and
Wattenhofer169.

ll
OPEN ACCESSReview
Their solution assigns a random number to each intermediary so

that the adversary can no longer conduct the original attack,

whereby honest participants have sufficient incentives to serve

as intermediaries. This solution improves the fairness of PCN

and preserves the interests of honest participants. Moreover, the

authors provide a formal security proof within the UC model.

As we have observed, research on PCN with formal security

proofs is becoming a new trend. Apart from the security issues,

other problems such as fairness59 and rebalancing246,247 may

arise in practice. Exploring and addressing potential vulnerabil-

ities and problems in PCN would be a promising research direc-

tion. This could improve user experience and attract more users

to get involved in PCN applications.

6.2.1.2. Payment channel networks in Ethereum. The afore-

mentioned payment channel networks are also useful in Tu-

ring-complete blockchains such as Ethereum, and the deploy-

ment of PCN in these systems is more convenient. Related

research can be divided into studies in the theoretical and appli-

cation aspects, as discussed in the following.

From the theoretical aspect, Tremback and Hess174 propose a

general model for payment channels in which smart contracts in

Turing-complete languages are used (called smart conditions in

their work). However, the implementation and security proof of

their model are not provided. The authors also propose a routing

protocol that finds a suitable path for the payment, but as the

concept of routing is beyond the scope of this review, we omit

the description here.

From the application aspect, Peterson175 implements the

Lightning Network on Ethereum with the Solidity language. Rai-

den176 is another advanced version of the Lightning Network that

improves the throughput of the blockchain system. Moreover,

Raiden tries to add more functionalities other than the process-
ing of standard transactions, such as up-

dating variables in smart contracts. How-

ever, it is still under development and

only supports the standard off-chain pay-

ment for now.

Similar to the PCNs already mentioned,

earlier PCN solutions in Ethereum also suf-

fer from the problems of feasibility and pri-

vacy. As pointed out by Dziembowski

et al.,177 although such schemes support

efficient off-chain payment, they require

the intermediaries to be always online so

that they can forward the necessary mes-

sages along the path and monitor possible

misbehaviors of others. Besides, from the

privacy perspective the intermediaries will

know the identities of the sender and

receiver and the amount of the transaction.

To address these problems, the virtual pay-
ment channel PERUN177 is proposed. It builds a virtual payment

channel between two users based on the established payment

channels, as shown in Figure 15. In this way, the intermediaries

are only involved during the establishment and settlement of the

virtual channel. Only essential affairs and events are handled by

the contracts automatically, and other procedures in the non-ma-

licious case are conducted off-chain, similar to the Lightning

Network. Besides this, Dziembowski et al.177 give the security

proof of the scheme within the UC model and give a proof-of-

concept implementation on Ethereum.

As shown in Figure 15,177 there is a payment channel be-

tween Alice and Ingrid, denoted as bA. Similarly, bB represents

the payment channel between Bob and Ingrid. There are two

corresponding smart contracts CA and CB on the blockchain.

In bA, the amounts deposited by Alice and Ingrid are yA and

yI, respectively, and the amounts deposited by Bob and Ingrid

in bB are zB and zI, respectively. With bA and bB, a virtual pay-

ment channel g is built. Deposit in bA will be partially frozen

when creating g, namely, yA for Alice and yI for Ingrid, respec-

tively. Similarly, zB and zI will be frozen for Bob and Ingrid in

bB, respectively. To prevent these deposits from being frozen

permanently, the three participants will set an expiration time

when establishing the channel. After the expiration time, or

when the channel g is settled on-chain, they can freely retrieve

their deposits.

We remark that PCN in Ethereum also suffers from contract

vulnerabilities and other issues. Formal proofs within standard

frameworks and exploration of possible problems are two prom-

ising research directions in this field.

6.2.2. State channels

Inspired by PCN, the updates of variables in smart contracts can

also be conducted off-chain, which is the key point of state
Patterns 2, February 12, 2021 35

Figure 15. Virtual payment channel in
PERUN
Figure reprinted with permission fromDziembowski
et al.177.

ll
OPEN ACCESS Review
channel networks.248,249 A state channel updates the states in

smart contracts according to the predefined functions and algo-

rithms in an off-chain way. Similarly to PCN, only the establishing

and settling transactions are conducted on-chain. Related

research mainly focuses on the generalization, usability, effi-

ciency, and privacy of state channel networks.

One typical application of the state channel network is online

poker. Bentov et al.178 design and implement an efficient online

poker contract on Ethereum through a functionality named

secure cash distribution with a penalty, which transfers the

money from losers to winners as soon as the game is finalized.

The authors also give security proof within the UC model. The

online poker scheme is merely a special case of state channel,

and this scheme can also be used for bidirectional payment

channels and other applications involving smart contracts.

The online poker schememainly implements the ideal multiple

sequential cash distribution functionality F�
MSCD. We rephrase it

in Figure 16.178 The sid and ssid are session identifiers. The n

participants are denoted P1;P2;/;Pn.A is the adversary, whose

corrupted nodes are represented as fPaga˛C. The set of honest

participants is H, where H = f1;.;ng C, h = jHj. The deposit

and penalty amount is d and q, respectively. b
!

is the fund distri-

bution vector, and bi represents the funds that Pi deserves. The

number of functions is m. The ideal function that receives (resp.

sends) messages from (resp. to) P is denoted by Freceive;P (resp.

Fsend;P), and Fbroadcast is the ideal broadcast function. The last

field in the messages with headers SETUP, ADDMONEY, RETURN, PEN-

ALTY, EXTRA, and REMAINING is the value of the fund.

As shown in Figure 16, there are three phases in F�
MSCD. In the

deposit phase, it accepts deposits of value d from honest

parties, and the penalty of value hq from adversary A. In the

execution phase, each participant takes part in the multi-party

functions several times with input payload pi; i˛f1;/; ng. The
execution results include the change Z on contract state S and

that on fund distribution vector b
!
. In this phase, participants

can also increase their deposits. When the execution phase is

completed, or the adversary A aborts, the participants enter

the claim phase. If A does not abort, each honest participant

Pi will receive his deposited fund d and his deserved fund bi;

else, the honest ones can share the adversary’s deposited pen-

alty hq and the additional penalty qi (if any). Finally, F�
MSCD re-

turns the remaining funds to A.

In summary, this ideal functionality first gets deposits from all

participants, then executes the desired functions and transfers

messages among users, and finally updates the states and dis-

tributes the deposited amounts accordingly. We mention that

this functionality could be adopted in many scenarios, since

most smart contracts are designed to handlemoney amongmul-

tiple participants, to implement some prefixed functions.
36 Patterns 2, February 12, 2021
In addition to online poker, state chan-

nels can also facilitate the application of

payment channels. Miller et al.180 specif-

ically describe the model of state chan-
nels within the UC model and construct an improved payment

channel, Sprites, that reduces the worst-case time to settle a

transaction. It constructs a global preimage manager (PM) con-

tract to verify the hash preimage instead of transferring it

among participants, as is done in the Lightning Network. The

receiver directly submits the preimage of the hash lock to PM

for verification, thereby reducing the time cost brought in by

the transfer of preimage. Sprites also supports the dynamic de-

posit and withdrawal of the fund, which greatly improves the

usability of the payment channels. However, it does not

consider privacy issues. The ideal functionality FState of a state

channel given in their work under the UC model is rephrased in

Figure 17.180 We mention that this model is relatively general,

and thus could be adopted for future research on state chan-

nels with few modifications.

As shown in Figure 17, FState initializes the variables, receives

auxiliary input message m from contract C, appends it to the

stack buf and auxin, and sets the pointer ptr. During the tth round

of execution, it receives the payload data pt;i (i = 1;/;n) from

each Pi within OðDÞ time, and forwards these messages to the

adversaryA. After receiving all messages, it updates the function

Fcontract with inputs, including the contract state S, inputs pt;i (i =

1;/;n), and other data in the stack. If there is any non-empty

output o in FState, it will be handled according to the output

rule C:output.

Inspired by the concept of virtual payment channel in PE-

RUN,177 Dziembowski et al.179 define the general state channel,

supporting the off-chain execution of arbitrary smart contracts.

Similar to PERUN, a higher-level channel is built upon two exist-

ing channels with a common third party. These higher-layer

channels are called virtual state channels. The users only

need to interact with their common third party, rather than the

blockchain, to open and close the higher channel. Conflicts

are resolved by this third party first. If this fails, contracts on

the blockchain are then invoked. For better understanding,

this general state channel is illustrated in Figure 18 given by

Dziembowski et al.,179 whose concept is partially similar to

that of HTLC in Figure 13 and PERUN payment channel in

Figure 15. Every channel can be connected, regardless of

which lower channels they are built on.

In Figure 18, five state channels are recorded on-chain. On this

basis,g1 (resp.g2) is thefirst-layervirtual statechannelbetweenP1

and P3 (resp. P4 and P6). Furthermore, g3 is a higher-level virtual

state channel, andg4 is built upong3 andg2. The authors alsopro-

vide the state channel and virtual state channel functionality, along

with a formal security proof.Meanwhile,Colemanet al.250 propose

theCounterfactual framework to build a general state channel that

enables theupdateofarbitrary smart contracts. In their framework,

developers no longer have to design specific state channels for

Figure 16. Ideal functionality F�
MSCD for

multiple sequential cash distribution with
penalties
Figure reprinted with permission from Bentov
et al.178.

ll
OPEN ACCESSReview
their application.However, thescheme lacks formal securityproof,

and the framework is still under development.

These state channel network schemes178–180,250 only support

two-party smart contracts. In other words, contracts that involve

more parties are not applicable in such state channels. Dziem-
bowski et al.181 propose a multi-party vir-

tual state channel that retains the advan-

tages of the virtual state channel.179

Specifically, a state channel could be

opened and closed without interacting

with the blockchain in the best case, and

such processes are almost instantaneous

and zero-cost. Regarding the worst case,

they reduce the time for conflict resolution

from OðnDÞ to OðDÞ, where D is the

maximum time delay for on-chain settle-

ment. When multiple parties are involved,

the potential security threats and conflicts

become more complicated. To alleviate

this concern, Dziembowski et al.181 apply

the UC model and give a formal security

proof in their work. The multi-party virtual

state channel requires all participants to

stay in a common state channel network,

as shown in Figure 19.181 Here, only

necessary operations are conducted

through on-chain multi-party contracts,

such as deploying the contracts, resolving

the disputes, and settling the channel.

Other procedures are moved off-chain to

gain efficiency, such as transferring funds,

exchanging messages, and updating the

balances. This could be a basis for future

improvements and modifications.

Specifically, in Figure 19 five parties

from P1 to P5 are connected by four on-

chain channels. P1; P3; P4, and P5 jointly

build themulti-party virtual state channel g

that excludes P2. The mpVSCC between

them refers to the instance of the multi-

party virtual state channel contract. The

x=y at the end of each channel indicates

the contract’s initial/final amount.

On the security aspect, Close and Stew-

art182 argue that state channels applicable

for arbitrary contracts may face the

following three conflicts: (1) conflicts

related to external states, such as ex-

change rates and temperatures; (2)

concurrency conflicts occurring when par-

ticipants perform conflicting operations

almost simultaneously and could not

agree on the order of operations; and (3)
silent conflict when one participant suddenly loses its response,

causing the suspension or abortion of off-chain operations. The

ForceMove182 framework, which puts constraints on the appli-

cations of the state channel essentially to avoid the first two con-

flicts, is proposed to solve these problems. Besides, ForceMove
Patterns 2, February 12, 2021 37

Figure 17. Ideal functionality of state
channel FState

Figure reprinted with permission from Miller
et al.180.

ll
OPEN ACCESS Review
introduces a new operation to ensure that the last conflict is

resolved smoothly.

Although the state channel helps avoid fees caused by

frequent transactions, an honest party must submit numerous

proofs to make things work as expected when a dispute occurs.

It is pointed out byMcCorry et al.183 that such proofs may involve

a large amount of data, which will result in high transaction fees.

That means an honest party has to pay for the misbehavior of

malicious parties. To protect the interests of honest parties,

Buckland and McCorry184 propose the concept of state asser-

tion channels. In their scheme, honest parties only submit the

hash value of the final state for finalization, avoiding high trans-

action fees. It adopts the concept of optimistic smart contracts,

where the update is accepted without validation, and parties

who disagree with it can submit their proofs for invalidation.

When a wrong update is verified, the provider will be rewarded

as their incentives.

From another perspective, honest parties in a state channel

must always be online in case the counter-party submits an

older version of the states, which is sometimes unrealistic.
38 Patterns 2, February 12, 2021
McCorry et al.185 propose the PISA solu-

tion to outsource this work to a third

party and give a formal security proof

of their scheme. Moreover, a proof-of-

concept implementation based on a

simplified version of Sprites180 is also

provided by McCorry et al.185 Compared

with other outsourcing solutions, such as

Monitor251 and WatchTower,252 it only

takes Oð1Þ storage space for the third

party (which is OðNÞ in Monitor, where

N is the number of transactions gener-

ated off-chain). It directly applies to

Ethereum, while WatchTower is not

compatible with platforms such as Bit-

coin and Ethereum.

State channels are attractive for off-

chain execution of smart contracts, and

relevant schemes with formal security

proofs have been discussed earlier. How-

ever, a concrete implementation and a

compiler that correctly converts smart

contracts into state channels are absent

and remain a topic for future research.

6.3. Extensions on core
functionalities
Off-chain channels discussed above

mainly focus on the off-chain protocols

while retaining the original execution

mechanisms of the underlying blockchain.

In this section, we discuss several

schemes that extend the core functional-
ities of the smart contract platform. Specifically, Section 6.3.1 in-

troduces the extensions on opcodes that add the functionalities

of smart contracts could achieve, Section 6.3.2 introduces the

schemes that enhance the security of deployed smart contracts,

and Section 6.3.3 describes the solutions that improve the effi-

ciency and privacy of contract execution. All these extensions

and alternatives are aimed to make smart contracts more appli-

cable for universal adoptions on data communication and value

exchanges.

6.3.1. Extension on opcodes

By adding newopcodes, more appealing functionalities could be

achieved in smart contracts, making them better meet daily use.

The covenant in Bitcoin refers to a mode that the future trans-

fer of the fund is restricted according to certain user-defined

rules. This functionality enriches the application scenario of Bit-

coin. From this point of view, Möser et al.186 extend Bitcoin with

an opcode that enables the so-called covenant mode, making it

possible to track the flow of a specific payment. It also enables

the vault transaction, which takes more time to take effect than

a standard one. Within this time, the owner possessing the

Figure 18. Construction of virtual state
channels
Figure reprinted with permission fromDziembowski
et al.179.

ll
OPEN ACCESSReview
recovery key can invalidate the vault transaction, avoiding the

economic loss caused by the private key theft and enhancing

the security of the private key. O’Connor and Piekarska187 pro-

pose another opcode that only involves computational opera-

tions and leaves out the transaction data, realizing the same

functionality as a covenant. They also introduce an opcode

that realizes the vault mode. Intuitively, both solutions above

require a soft fork (Definition 17) on Bitcoin.

There are also demands to move smart contracts across

blockchains to achieve a better performance (which is relevant

to the target platform) or simply as a backup. Fynn et al.188 pro-

pose an opcode OP_MOVE in EVM and a corresponding keyword

in Solidity to realize the cross-chain movement of smart con-

tracts. Such movement could only be done between two block-

chains with the same execution environment. In fact, Wester-

kamp189 has already proposed a similar moving protocol,

whose solution does not involve the modification of opcodes

but requires a large gas overhead for the migration.

We remark that such extensions on opcodesmight bring in un-

expected vulnerabilities, e.g., the OP_LSHIFT opcode could be

exploited to crash a Bitcoin node.21 Therefore, theoretical and

practical analysis is required before deployment. As for future

research, opcodes that might facilitate the application of smart

contracts could be further investigated. For example, safe

math algorithms (especially the cryptographic schemes such

as commitments) could be integrated into one opcode for devel-

opers’ convenience. Moreover, inspired by OP_MOVE,188 opco-

des that communicate with other blockchains could be consid-

ered for efficient value- and data exchange across blockchains.

6.3.2. Improvements on security

Asmentioned in Section 1, smart contracts are difficult to update

due to the tamper-resistant nature of blockchain. When a bug or

vulnerability is found in a deployed contract, users and devel-

opers can do nothing to remedy the situation. To mitigate this

risk, Dickerson et al.190 propose the concept of proof-carrying

smart contracts (PCSCs) based on the idea of proof-carrying co-

des. Its implementation involves modifying the underlying

consensus and execution mechanism. Namely, the blockchain

only maintains the key properties of the deployed contracts.

The creator firstly uploads some key properties of the contract

to the blockchain as a commitment. Thereafter, theminers check

that such key features remain unchanged before and after the

update operation. In this way, the upgrade of smart contracts

could be realized without harming security.

The update of smart contracts has been a continual problem

for a long time and is a promising research direction. Inspired

by Dickerson et al.,190 we remark that auxiliary schemes and

tools, such as chameleon hash,253 are worthy of consideration.

6.3.3. Improvements in efficiency and privacy

Concerning privacy issues, we have introduced several private

contract schemes that utilize ZKP in Section 6.1.2. Schemes dis-
cussed here also use cryptographic techniques such as ZKP.

Different from the prior solutions, however, the core functional-

ities of the original execution mechanisms are modified and

extended to support efficient and privacy-preserving executions

of contracts, as discussed in the following.

To improve efficiency and privacy during smart contract exe-

cutions, Arbitrum191 emerges with a redesigned virtual machine.

In Arbitrum, users delegate the off-chain executions of smart

contracts to trusted nodes. With the one-step proof delivered

by the Arbitrum virtual machine, the correctness is guaranteed.

Such a proof only leaks a small part of privacy, and since the

computation is off-chain, no extra information of the contract

will be revealed. Moreover, the authors claim that with tech-

niques such as Bulletproofs239 and zk-SNARKs,223 the leakage

of privacy could be further reduced. Arbitrum requires a reason-

able incentive and penalty mechanism to ensure the correct

execution offered by rational participants. Since not all nodes

execute the same smart contracts, efficiency is also improved.

Asmentioned at the beginning of this section, smart contracts’

complexity is limited due to the execution mechanisms (e.g., the

gas limit). For traditional smart contracts, the execution result is

easy to verify. However, for complex contracts the verification

procedure is non-trivial and consumes a large number of re-

sources, making it impossible to be performed on-chain.

YODA192 is proposed to help reach an agreement on the execu-

tion results of such complex contracts. It introduces a non-deter-

ministic off-chain execution mechanism, with randomly selected

nodes and a probability model to determine the execution result.

Themost prominent feature of YODA is that it eliminates the step

of verifying the results on-chain, thereby avoiding the time delay

caused by the on-chain settlement.

However, W€ust et al.194 argue that YODA and Arbitrum are not

suitable for concurrent execution of interactive complex smart

contracts designated to different groups of miners. For instance,

if a contract CA is executed by a group GA, and CB is assigned to

GB, it is infeasible for CA to call CB in these systems. To address

this problem the authors propose the ACE scheme (asynchro-

nous and concurrent execution), whereby the contract execution

procedure is extracted from the traditional miners. That is,

miners are only responsible for reaching consensus on the

ordering of valid transactions, and the appointed executors are

informed by the on-chain information and interact with each

other (including the communication across groups) to execute

the contracts concurrently. ACE is proven to enable safe

cross-group calls without assuming all groups to be reliable,

and contracts in ACE are proven to stay responsible when an

honest quorumof executors exists. However, such amechanism

makes the contract information publicly available, and it cannot

protect the privacy of contracts do as YODA and Arbitrum.

To fully protect users’ privacy, Zerocash232 introduces the zk-

SNARK scheme into its underlying execution mechanism but
Patterns 2, February 12, 2021 39

Figure 19. An example of amulti-party virtual
state channel
The mpVSCC between them refers to the instance of
the multi-party virtual state channel contract. The
x=y at the end of each channel indicates the initial/
final amount of participants in a contract. Figure
reprinted with permission from Dziembowski
et al.181

ll
OPEN ACCESS Review
gives up the support of smart contracts. Bowe et al.193 extend

Zerocash and propose ZEXE, which utilizes the technique of

two-layer recursive proof with properly selected cryptographic

parameters to achieve the succinct zero-knowledge proof of

arbitrary predicates defined by users. With such recursive

proofs, the contents and results of smart contracts can be

entirely hidden. The overhead of ZEXE is comparable with that

of Zerocash232 and Hawk.140 Besides, the authors further pro-

vide a security proof within the UC model.

To improve the efficiency and throughput of blockchains,

Poon and Buterin254 constructed a child-chain scheme Plasma,

with a series of contracts anchored on Ethereum. Plasma uses

the bitmap to map the funds spent on a single bit, reducing the

transaction size. It further alleviates the problems of transaction

congestion and limited throughput on Ethereum. Participants

can submit fraud proofs to the main chain (Ethereum) to enforce

the correct execution in the child-chain. However, such systems

focus more on the security of consensus and less on smart con-

tracts’ execution mechanism. Therefore, such schemes are

beyond the scope of this review. Similar child-chain schemes

such as Cosmos,255 Polkadot,256 and side-chain schemes235,236

are also beyond our scope.

Aswe have observed, schemes fromvarious perspectives have

been proposed to improve efficiency and privacy.We remark that

since HAWK,140 Arbitrum,191 and YODA,192 there is a trend toward

moving the executions of smart contracts off-chain, among

several user-designated executors, to keep the contract contents

private and allow parallel executions of independent contracts by

multiple sets of executors. However, as pointed out by W€ust

et al.,194 the aforementioned proposals do not consider the invo-

cation among contracts, which may involve different sets of exec-

utors. We remark that this problem could be further considered in

the future, since W€ust et al.194 sacrificed the privacy improve-

ments introduced by the prior works. Moreover, cryptographic

schemes such as ZKP and SMPC also have prominent influences

in developing alternative contract execution systems.

7. DISCUSSION

In this review,we have discussed and categorized 159 papers (or

online resources) on smart contract construction and executions

up to August 2020. In the following, we present the comparison

with related work and our limitations. We then present the chal-

lenges and future research directions on the construction and

executions of smart contracts.

7.1. Comparison with related work
Compared with the related surveys on the features of contract

platforms,26,28,33 properties of the contracts,12,28,33–38 and
40 Patterns 2, February 12, 2021
related analysis tools33,37–42 (see Section 2.3), this paper covers

more aspects of smart contracts, elaborates the existing

schemes in detail, and points out several research directions

for each category. We take efforts to form a systematization of

knowledge on contract construction and executions. We fill the

gap between research and development caused by the quick

evolution of smart contract technology.

7.2. Our limitations
First, most of our discussion is related to the studies on Bitcoin

and Ethereum. Although the research on these two platforms

contributes to the majority of the literature, other platforms

such asHyperledger Fabric are also attractive for business appli-

cations. We do not cover the smart contract schemes on other

platforms owing to time and space, and leave them for

future work.

Second, as mentioned in Section 1, we do not cover the high-

level descriptions of smart contracts with other technologies,

such as artificial intelligence, cloud computing, and the Internet

of Things. These are promising application scenarios for smart

contracts, but relevant papers usually fail to address the con-

struction and execution of smart contracts. We leave the classi-

fication of these schemes for future work.

7.3. Challenges
We have informally mentioned several challenges that hinder

the development and adoption of smart contracts in Section

4, Section 5, and Section 6. The security requirements and

criteria on smart contracts are quite distinct from those on

general computer programs, making the construction of smart

contracts skill oriented. There are also many open problems

such as privacy leakage, execution efficiency, and contract

complexity, which have attracted widespread attention. To

address the challenges more clearly, we summarize the major

limitations in the following.

(1) Frequently occurring vulnerabilities. Smart contracts are

believed to have great potential influence in the financial

area. However, users have to face the risks brought about

by poor development practices. Various attacks have

been claimed (see Section 5.2.1 and previous

works12,89–94), which may influence the adoption of smart

contracts in business.

(2) Incomplete design paradigms. Several groups22,85,86

have seen the significance of design paradigms for devel-

opers to understand potential risks. However, since the

smart contract technology is still under rapid evolution,

paradigms may also change quickly and are far from

adequate. Besides, several concrete paradigms in the

ll
OPEN ACCESSReview
literature (see Section 5.1.1) might be found to be ineffi-

cient or vulnerable in the future.

(3) Inefficient analysis tools. There have been tens of analysis

tools aimed at detecting vulnerabilities in smart contracts

(see Section 4.2.1 and Section 5.2.1). However, most of

them are inefficient as they require extra effort in

describing desired properties in a specific language. Be-

sides, there is a trade-off between high accuracy and full

coverage, and users have to choose from these tools.

(4) Low processing rate and limited complexity. The current

transaction delay is relatively high, making smart con-

tracts infeasible for the applications subject to time delay.

Moreover, contracts’ complexity is limited (see Section 6).

Many schemes have been introduced, such as off-chain

channels and alternative systems (see Section 6.2

and191,192,194). However, these schemes may introduce

new problems.59,246,247 Besides, the alternatives may

require additional techniques such as randomness,

requiring massive overheads.

(5) Lack of privacy. Privacy is another issue commonly dis-

cussed (see Section 6.1 and Section 6.3.3). The off-chain

networks and other alternative systems may help protect

privacy but again, most of them rely on additional crypto-

graphic schemes223,224,239 that are still under devel-

opment.
7.4. Future research directions
We enumerate several future research directions summarized

from our analysis at the end of each taxonomy, from the perspec-

tive of the construction and execution of smart contracts.

(1) Design paradigms for script-based blockchains. With the

emergence and implementation of off-chain chan-

nels,25,59,169–173 designing a fair and economic off-chain

network on script-based blockchains becomes a prom-

ising research direction. Scriptless schemes57–59 in

script-based blockchains also deserve further investi-

gation.

(2) Design tools for script-based blockchains. There is not

much research on the design tools for script-based block-

chains. The analysis techniques for Turing-complete

blockchains (see Section 5.2.1) may be migrated into

script-based blockchains. Moreover, high-level lan-

guages with formal proofs66,67 is a promising research di-

rection.

(3) Design paradigms for Turing-complete blockchains. The

investigation of smart contracts’ best practices22,85,86

and design paradigms28,87,88 is a new research direction,

requiring massive and continuous efforts. Additionally,

mitigation of practical cryptographic protocols257 to Tu-

ring-complete blockchains might be a research direction

in the future.Moreover, contracts that are provably secure

or private within the UC model197 is a trend for theoretic

research.173,177–181

(4) Design tools for Turing-complete blockchains. Apart from

commonly used techniques such as symbolic execu-

tion,89,115–123 the fuzzing test137–139 is another prevalent

technique. Lightweight and scalable security analysis

could be further considered to meet the potential need
for the growth of contract size. Moreover, analysis

tools providing useful suggestions or counter-examples

for correction are attractive, as reported previ-

ously.108,112,121,136. Programming languages149,152,155,156

that support formal proofs are also promising. Finally,

auxiliary frameworks with high accessibility and expres-

sivity (e.g., Eberhardt and Tai141) could be further consid-

ered in the future.

(5) Private contract systems. In recent years, some re-

searchers have combined various cryptographic

schemes such as secure multi-party computation160–162

and ZKP6,140,141 to execute private contracts. Exploring

efficient and economic solutions for privacy-preserving

smart contracts is a promising research direction. Crypto-

graphic schemes such as blind signatures171 and ring sig-

natures258 might be adopted to obtain better anonymity.

Additionally, inspired by Kerber et al.,259 we remark that

private contracts with formal proofs (especially within

the UC model197) are also promising for theoretical

research. Finally, compilers that convert general functions

into protocols in private contract systems also deserve

consideration.
8. CONCLUSION

In this paper, we have made a categorization of the 159 studies

collected. For the schemes on smart contracts construction, we

first group them into script-based and Turing-complete block-

chains. Schemes in these two kinds of platforms are then divided

into design paradigms and tools. The design paradigms refer to

practical patterns for common smart contract applications, and

the design tools refer to analysis or auxiliary tools that detect vul-

nerabilities or assist developers during contract construction.

We categorize the related extensions and alternative systems

for contract executions into private contracts with extra tools,

off-chain channels, and extensions on core functionalities.

Each category is further divided into smaller aspects according

to the techniques they use (e.g., SMPC protocols, ZKP, and

TEE) or their targets (e.g., privacy and efficiency). This work is

aimed at providing insights for new researchers and developers

in this field.

According to our survey, problems such as privacy leakage,

execution efficiency, and contract complexity have restricted

the application scenarios of smart contracts. We conclude the

challenges for smart contracts should be universally adopted

into five aspects: (1) frequently occurred vulnerabilities; (2) incom-

plete design paradigms; (3) inefficient analysis tools; (4) low pro-

cessing rate and limited contract complexity; (5) lack of privacy.

These challenges have attracted widespread attention in the liter-

ature and are still open problems that deserve future research.

Future work should pay attention to fair and economic off-

chain network schemes, high-level languages with formal

proofs, best practices, practical implementation of crypto-

graphic protocols, provably secure or provably private con-

tracts, scalable or automatic analysis tools, private contracts

with cryptographic techniques, and practical compilers for pri-

vate contracts. These directions could alleviate the concern of

users and promote the development of smart contracts.
Patterns 2, February 12, 2021 41

Table 8. Comparison of different types of blockchains

Type Execute transactions Access data Generate transactions Examples

Public anyone anyone anyone Bitcoin, Ethereum

Open consortium permitted registered/anyone registered/anyone Ripple, Libra

Closed consortium permitted permitted permitted Corda, Quorum, Hyperledger Fabric

Private owner owner owner locally running blockchain

The word ‘‘registered’’ here refers to a less restricted condition than ‘‘permitted,’’ and involves more participants.

ll
OPEN ACCESS Review
DEFINITIONS

In this section, we present and rephrase 17 essential definitions

and concepts frequently used in our work. Definitions that are

only used once are introduced when they first appear in context.

With the development of blockchain technology, there have

been several kinds of blockchains with distinct properties. In

this paper, we categorize blockchains into three categories—

public, consortium, and private blockchains—according to the

works of Bano et al., Yagas et al., and Garay et al.260–262

Definition 1 (public blockchain)
In a public blockchain, any node is permitted to join the mainte-

nance of data on the blockchain, and the data are publicly acces-

sible and verifiable. Anyone is allowed to deploy, call, and

execute smart contracts through generating and executing

transactions.

Definition 2 (consortium blockchain)
In a consortium blockchain, the nodes that are responsible for

executing transactions (i.e., maintaining the data) are deter-

mined in advance. How the blockchain data (including transac-

tions and smart contracts) can be proposed and accessed de-

pends on the openness of the consortium:

d Closed consortium: only predetermined nodes can pro-

pose records and can access the data

d Open consortium: anyone can register (through a central-

ized party) to obtain the right of proposing or accessing re-

cords on the blockchain

Definition 3 (private blockchain)
A private blockchain refers to one that is completely controlled

by an individual party. It is only used to record private informa-

tion, and only the owner has the right to access and maintain

the data. In practice, common public blockchains include Bit-

coin,1 Ethereum,2,3 and so forth, and they put no limits on the

entering of the P2P network. Common closed consortium block-

chains include Corda,5 Quorum,6 and Hyperledger Fabric.7 Such

closed consortium blockchains aremainly designed for business

partners to cooperate better. Common open consortium block-

chains include Ripple263 and Libra,264 and these open con-

sortium blockchains offer more transparency by allowing anyone

to register to join the network while keeping the rights of main-

taining the membership of all the participants. Both public and

consortium blockchains mentioned here can be considered as

private blockchains when running locally by an individual party.

A brief comparison of the blockchains discussed above is

shown in Table 8. Note that the word ‘‘registered’’ means a party

should register to a centralized organization before they have the
42 Patterns 2, February 12, 2021
right to access data or generate transactions, while ‘‘permitted’’

refers to a more restricted authorization to determine the mem-

bership and occurs less often in practice. In other words, the re-

striction on permission is stronger than the registration proced-

ure in the context.

Next, to better understand the execution mechanism of the

blockchain, we give the definition of consensus that is one of

the key techniques within the blockchain, according to the works

of Garay et al.265 and Pass et al.266:

Definition 4 (consensus)
A consensus mechanism enables all participating nodes,

whether honest or malicious, to agree on the contents of a block-

chain. In a consensus mechanism, the following properties must

be satisfied:

d Liveness: any transaction should be finally processed

d Persistence: if an honest party validates a transaction

(accept or reject), all other honest nodes will eventually

have the same operation

In many related studies, the notion of miners is used to refer to

the participants in a blockchain system. We give a simple defini-

tion of it as follows.

Definition 5 (miner)
A miner refers to a node providing its non-trivial work in a

consensus mechanism for the rewards in a blockchain. During

the maintenance of a blockchain within the consensus mecha-

nism, there are cases when nodes disagree on the final results.

This is called a fork in the context of blockchain:

Definition 6 (fork)
A fork refers to a disagreement on blockchain records among

participating nodes.

Forks are usually temporal and will finally be eliminated by the

consensus rule. However, under other circumstances a fork may

be deliberately triggered to launch an update of the blockchain

system. The concept of the fork can be further divided into soft

and hard forks, as defined below.

Definition 7 (soft fork)

A soft fork refers to a fork caused by the update of backward

compatible consensus.

Definition 8 (hard fork)

A hard fork refers to the fork caused by the update of non-back-

ward compatible consensus.

Note that after a soft fork,267 some transactions or blocks that

are valid under the old rules may become invalid while after a

hard fork,267 the transactions or blocks under the new rules

become invalid under the old rules.

ll
OPEN ACCESSReview
A soft fork is mainly used to introduce new types of transac-

tions or to fix some bugs in the consensus protocol. It does

not require all nodes to switch to the new consensus. Nodes

running the old consensus can still recognize the transactions

and blocks under the new rules while in comparison, a hard

fork usually arises when big events (e.g., the DAO attack) or ma-

jor disputes in the community occur, and all nodes have to

choose one of the forks and end upwith two distinct blockchains

that are not compatible with each other.

In blockchain systems, users and smart contracts rely on

transactions to contact with each other. Therefore, we give a uni-

versal definition of a transaction as the following.

Definition 9 (transaction)
A transaction Tx is a tuple of five elements, i.e.,

Tx= ðt; in;out; s;pldÞ where Tx:t is the timestamp that a miner re-

ceives Tx. We assume that at most one Tx could be received at

time t, namely,cisj; Txi:tsTxj:t always holds. With this assump-

tion, transactionswill beexecuted inchronological order (thisorder

may vary among miners). Tx:in (resp. Tx:out) is the input (resp.

output) of the transaction. Tx:s is the signature of the transaction,

which is used to show the ownership of the fund to be transferred

in the transaction.Tx:pld refers toarbitrarymessagesappended to

the transaction, and is calledpayloaddata in this paper. In fact, the

specific contents of a transaction (i.e., the format and structure of

each element) vary among blockchains according to the underly-

ing usermodel. TakingBitcoin and Ethereumasexamples, Bitcoin

adopts the unspent transaction output (UTXO)model, while Ether-

eumuses the accountmodel. This is one of the key differences be-

tween these two platforms, and most existing blockchains also

adopt either one of these two models. Therefore, we give the def-

initions of the UTXO and the account model in the following.

Definition 10 (UTXO model)
In the UTXO model, unspent money is stored in UTXOs. Each

transaction consumes existing UTXOs and generates new

UTXOs, except the coinbase transaction that assigns the miner

a UTXO without inputs as a reward. For a UTXO U, it contains in-

formation such as the source addresses and the values. For a

transaction Tx within the UTXO model, the sum of values in the

output UTXOs must be less than or equal to that in the input

UTXOs, i.e.:
P

U˛Tx:out
U:v%

P
U˛Tx:in

U:v where U:v refers to the value

of U and the extra value in the input is collected by the miners

as the execution fee.

Definition 11 (account model)
In the account model, each user or contract has a fixed account

and address. The account records the balance, the contract co-

des, and the state data specified in the creating transaction. The

balance FbalanceðaÞ in the account corresponding to address a

must be non-negative. In addition, for a transaction to be valid,

the input amount Tx:in to be spent should be less than or equal

to the balance in the account, i.e., FbalanceðaÞR0;FvalueðTx:inÞ%
FbalanceðaÞ, where FvalueðTx:inÞ indicates the value contained

in Tx:in.

As mentioned previously, the transaction data structure is

different amongblockchainswithin these twomodels.Specifically,

in theUTXOmodel,Tx:in includesasetofUTXOs tobespent,while
in the accountmodel it directly refers to the value tobe transferred.

Similarly, Tx:out includes a new UTXO set in the UTXO model,

while it includes responses from the target address (e.g., returned

messages from a smart contract) in the account model.

With the above definitions, we are able to give a formal defini-

tion of smart contracts. We remark that our definition is inspired

by the description of the world state and transactions in Ether-

eum Yellow Paper,3 and the ideal smart contract functionality

F�
StCon in Bentov et al.178

Definition 12 (smart contract)
A smart contract refers to a computer program C deployed on a

blockchain with public interfaces and state variables, satisfying

CðSi;TxiÞ = ðSj;RiÞ;

where S = fSi˛N� g is the set of all possible states in C,

T = fTxi˛N� = ðt; in;out; s;pldÞi˛N� g is the transaction set,

and R= fRi˛N� g is the set of possible responses from the

contract, e.g., the success or failure symbol of execution, or

any other predefined values. After C is called by a valid Txi,

the new state Sj, and the response Ri are produced accordingly.

Studies on smart contracts mainly focus on two aspects,

which are defined as security and correctness as follows.

Definition 13 (security of smart contracts)
The security of smart contracts refers to the ability to resist unau-

thorized state change, including fund transfer, state tampering,

and accidental self-destruction.

Definition 14 (correctness of smart contracts)
The correctness of smart contracts refers to the ability to

correctly realize the expected functionality.

To ensure the security and correctness of smart contracts

and to achieve other desired properties such as privacy

and efficiency, cryptographic schemes and hardware

equipment may be introduced. Here we briefly give the

definitions of secure multi-party computation, zero-knowledge

proof, and trusted execution environment in the following.

Definition 15 (secure multi-party computation268)
In a secure multi-party computation protocol p, participants

P1;P2;/;Pn can jointly evaluate a probabilistic polynomial

time function fðx1; x2;/; xnÞ= ðy1; y2;/; ynÞ where xi (resp. yi) is

the secret input (resp. output) of Pi (i = 1;2; /; n), and the

following two properties hold:

d Correctness: each Pi gets the correct result

d Privacy: anyPi cannot get extra information except his own

input and output, especially the inputs and outputs of other

participants Pj where jsi

Definition 16 (zero-knowledge proof269)
In a proof system CP;VDðxÞ, a prover P proves to a verifier V that x

belongs to a language L, which is an NP problem, i.e., x˛L;
L˛NP. A protocol p is said to be a zero-knowledge proof proto-

col if the following three properties are satisfied:

d Completeness: any true statement can be accepted with

an overwhelming probability
Patterns 2, February 12, 2021 43

ll
OPEN ACCESS Review
d Soundness: any false statement can only be accepted with

a negligible probability

d Zero-knowledge: any probabilistic polynomial time verifier

cannot get extra information other than x˛L, and its view is

indistinguishable from that of a simulator Fsim

Definition 17 (trusted execution environment270)
Trusted execution environment is a kind of hardware equipment,

usually an enclave in the memory, which ensures that the execu-

tion environment is not influenced or manipulated. Trusted

execution environment guarantees the reliability of the execution

results and the privacy of executed contents.
ACKNOWLEDGMENTS

The authors would like to thank the reviewers and editors for their valuable
comments and guidance to make our work more comprehensive. This work
is supported in part by the National Key R&D Program of China
(2017YFB1400702), in part by the National Natural Science Foundation of
China (61972017, 61972018, 61972014, 72031001), in part by the National
Cryptography Development Fund (MMJJ20180215), and in part by the Funda-
mental Research Funds for the Central Universities (YWF-20-BJ-J-1039).
AUTHOR CONTRIBUTIONS

Conceptualization, B.H. and Z.Z.; methodology, B.H. and Z.Z.; investigation,
B.H.; validation, Z.Z.; writing – original draft, B.H.; writing – review & editing,
B.H., Z.Z., Y.L., and J.Y.; visualization, B.H., Y.L., and J.Y.; supervision,
Z.Z., J.L., R.L., and X.L.; funding acquisition, J.L. and Z.Z.

REFERENCES

1. Nakamoto, S. (2008). Bitcoin: a peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf.

2. Buterin, V. (2014). A next-generation smart contract and decentralized
application platform. https://whitepaperdatabase.com/wp-content/
uploads/2017/09/Ethereum-ETH-whitepaper.pdf.

3. Wood, G. (2014). Ethereum: a secure decentralised generalised transac-
tion ledger. https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf.

4. N. Szabo, Formalizing and securing relationships on public networks,
First Monday 2 .

5. Brown, R.G., Carlyle, J., Grigg, I., and Hearn, M. (2016). Corda: an intro-
duction. https://docs.corda.net/_static/corda-introductory-
whitepaper.pdf.

6. Harris, O. (2016). Quorum. https://github.com/jpmorganchase/
quorum/wiki.

7. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., Caro,
A.D., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al. (2018).
Hyperledger Fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23–26, 2018, pp. 30:1–30:15.

8. (2020). Hyperledger fabric case studies. https://www.hyperledger.org/
learn/case-studies.

9. Ron, D., and Shamir, A. (2013). Quantitative analysis of the full bitcoin
transaction graph. In Financial Cryptography and Data Security - 17th In-
ternational Conference, FC 2013, Okinawa, Japan, April 1–5, 2013,
Revised Selected Papers, Vol. 7859 of Lecture Notes in Computer Sci-
ence (Springer), pp. 6–24.

10. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D.,
Voelker, G.M., and Savage, S. (2016). A fistful of bitcoins: characterizing
payments among men with no names. Commun. ACM 59, 86–93.

11. Siegel, D. (2016). Understanding the DAO attack. https://www.coindesk.
com/understanding-dao-hack-journalists/.
44 Patterns 2, February 12, 2021
12. Atzei, N., Bartoletti, M., and Cimoli, T. (2017). A survey of attacks on
Ethereum smart contracts (Sok). In Principles of Security and Trust -
6th International Conference, POST 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Up-
psala, Sweden, April 22–29, 2017, Proceedings, pp. 164–186.

13. Conti, M., E, S.K., Lal, C., and Ruj, S. (2018). A survey on security and pri-
vacy issues of bitcoin. IEEE Commun. Surv. Tutorials 20, 3416–3452.

14. Zheng, Z., Xie, S., Dai, H., Chen, X., and Wang, H. (2018). Blockchain
challenges and opportunities: a survey. Int. J. Web Grid Serv. 14,
352–375.

15. Kitchenham, B. (2004). Procedures for performing systematic reviews, joint
Technical Report. http://www.inf.ufsc.br/�aldo.vw/kitchenham.pdf.

16. Nakamoto, S. (2009). Bitcointalk: Bitcoin forum. bitcointalk.org,
accessed August 1, 2020.

17. Bitcoin Wiki, 2010. en.bitcoin.it, accessed August 1, 2020.

18. Tschorsch, F., and Scheuermann, B. (2016). Bitcoin and beyond: a tech-
nical survey on decentralized digital currencies. IEEE Commun. Surv. Tu-
torials 18, 2084–2123.

19. Maxwell, G. (2011). Bitcoin wiki: zero knowledge contingent payment.
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment.

20. Hearn, M. (2012). Bitcoin wiki: contracts. https://en.bitcoin.it/wiki/
Contract.

21. BitcoinWiki. (2020). Bitcoin wiki: script (MediaWiki). https://en.bitcoin.it/
wiki/Script.

22. Holscher, E. (2016). Solidity docs. https://solidity.readthedocs.io/en/
latest/solidity-by-example.html.

23. Buterin, V. (2017). Serpent language. https://github.com/ethereum/
serpent.

24. BitcoinWiki. (2015). Bitcoinwiki: multisignature. https://en.bitcoin.it/wiki/
Multisignature.

25. Poon, J., and Dryja, T. (2016). The Bitcoin Lightning Network: scalable
off-chain instant payments. https://www.bitcoinlightning.com/wp-
content/uploads/2018/03/lightning-network-paper.pdf.

26. Seijas, P.L., Thompson, S.J., and McAdams, D. (2016). Scripting smart
contracts for distributed ledger technology. http://eprint.iacr.org/
2016/1156.

27. Nxt Community (2014). Nxt whitepaper. https://nxtwiki.org.

28. Bartoletti, M., and Pompianu, L. (2017). An empirical analysis of smart
contracts: platforms, applications, and design patterns. In Financial
Cryptography and Data Security - FC 2017 International Workshops,
WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7,
2017, Revised Selected Papers, pp. 494–509.

29. Counterparty.io. (2014). Counterparty: protocol specification. https://
counterparty.io/docs/protocol_specification/.

30. Mazieres, D. (2015). The stellar consensus protocol: a federated model
for internet-level consensus. https://www.stellar.org/papers/stellar-
consensus-protocol.

31. Davis, S. (2014). Monax. https://monax.io/.

32. Kordek, M. (2016). Lisk. https://lisk.io/documentation/lisk-sdk/
index.html.

33. Junis, F., Prasetya, F.M.W., Lubay, F.I., and Sari, A.K. (2019). A revisit on
blockchain-based smart contract technology. http://arxiv.org/abs/
1907.09199.

34. Alharby, M., and van Moorsel, A. (2017). Blockchain-based smart con-
tracts: a systematic mapping study. http://arxiv.org/abs/1710.06372.

35. Dika, A. (2017). Ethereum Smart Contracts: Security Vulnerabilities and
Security Tools, Master’s thesis (NTNU).

https://bitcoin.org/bitcoin.pdf
https://whitepaperdatabase.com/wp-content/uploads/2017/09/Ethereum-ETH-whitepaper.pdf
https://whitepaperdatabase.com/wp-content/uploads/2017/09/Ethereum-ETH-whitepaper.pdf
https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
https://docs.corda.net/_static/corda-introductory-whitepaper.pdf
https://docs.corda.net/_static/corda-introductory-whitepaper.pdf
https://github.com/jpmorganchase/quorum/wiki
https://github.com/jpmorganchase/quorum/wiki
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref7
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref7
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref7
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref7
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref7
https://www.hyperledger.org/learn/case-studies
https://www.hyperledger.org/learn/case-studies
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref9
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref9
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref9
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref9
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref9
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref10
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref10
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref10
https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref12
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref12
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref12
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref12
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref12
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref13
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref13
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref14
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref14
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref14
http://www.inf.ufsc.br/%7Ealdo.vw/kitchenham.pdf
http://www.inf.ufsc.br/%7Ealdo.vw/kitchenham.pdf
http://bitcointalk.Org
http://en.bitcoin.it
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref18
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref18
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref18
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Script
https://solidity.readthedocs.io/en/latest/solidity-by-example.html
https://solidity.readthedocs.io/en/latest/solidity-by-example.html
https://github.com/ethereum/serpent
https://github.com/ethereum/serpent
https://en.bitcoin.it/wiki/Multisignature
https://en.bitcoin.it/wiki/Multisignature
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
http://eprint.iacr.org/2016/1156
http://eprint.iacr.org/2016/1156
https://nxtwiki.org
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref28
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref28
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref28
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref28
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref28
https://counterparty.io/docs/protocol_specification/
https://counterparty.io/docs/protocol_specification/
https://www.stellar.org/papers/stellar-consensus-protocol
https://www.stellar.org/papers/stellar-consensus-protocol
https://monax.io/
https://lisk.io/documentation/lisk-sdk/index.html
https://lisk.io/documentation/lisk-sdk/index.html
http://arxiv.org/abs/1907.09199
http://arxiv.org/abs/1907.09199
http://arxiv.org/abs/1710.06372
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref35
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref35

ll
OPEN ACCESSReview
36. Macrinici, D., Cartofeanu, C., and Gao, S. (2018). Smart contract applica-
tions within blockchain technology: a systematic mapping study. Tele-
matics Inform. 35, 2337–2354.

37. Ayman, A., Aziz, A., Alipour, A., and Laszka, A. (2019). Smart contract
development in practice: trends, issues, and discussions on stack over-
flow. http://arxiv.org/abs/1905.08833.

38. Harz, D., and Knottenbelt, W.J. (2018). Towards safer smart contracts: a
survey of languages and verification methods. http://arxiv.org/abs/
1809.09805.

39. Angelo, M.D., and Salzer, G. (2019). A survey of tools for analyzing Ether-
eum smart contracts. In IEEE International Conference on Decentralized
Applications and Infrastructures, DAPPCON 2019, Newark, CA, USA,
April 4–9, 2019, pp. 69–78.

40. Liu, J., and Liu, Z. (2019). A survey on security verification of blockchain
smart contracts. IEEE Access 7, 77894–77904.

41. Ante, L. (2020). Smart contracts on the blockchain—a bibliometric
analysis and review. https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=3576393.

42. Almakhour, M., Sliman, L., Samhat, A.E., andMellouk, A. (2020). Verifica-
tion of smart contracts: a survey. Pervasive Mobile Comput. 67, 101227.

43. Bitcoin.org. (2014). Bitcoin release 0.9.0. https://bitcoin.org/en/release/
v0.9.0.

44. Bartoletti, M., and Pompianu, L. (2017). An analysis of bitcoin op_return
metadata. In Financial Cryptography and Data Security - FC 2017 Inter-
national Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema,
Malta, April 7, 2017, Revised Selected Papers, pp. 218–230.

45. Faisal, T., Courtois, N., and Serguieva, A. (2018). The evolution of embed-
ding metadata in blockchain transactions. In 2018 International Joint
Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil,
July 8–13, 2018, pp. 1–9.

46. Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L.
(2014). Secure multiparty computations on bitcoin. In 2014 IEEE Sympo-
sium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18–21,
2014, pp. 443–458.

47. Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L.
(2014). Fair two-party computations via bitcoin deposits. In Financial
Cryptography and Data Security - FC 2014 Workshops, BITCOIN and
WAHC 2014, Christ Church, Barbados, March 7, 2014, Revised Selected
Papers, pp. 105–121.

48. Bartoletti, M., and Zunino, R. (2017). Constant-deposit multiparty lot-
teries on bitcoin. In Financial Cryptography and Data Security - FC
2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and
TA, Sliema, Malta, April 7, 2017, Revised Selected Papers, pp. 231–247.

49. Kumaresan, R., Moran, T., and Bentov, I. (2015). How to use bitcoin to
play decentralized poker. In Proceedings of the 22nd ACMSIGSACCon-
ference on Computer and Communications Security, Denver, CO, USA,
October 12–16, 2015, pp. 195–206.

50. Bentov, I., and Kumaresan, R. (2014). How to use bitcoin to design fair
protocols. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17–21, 2014,
Proceedings, Part II, pp. 421–439.

51. Kumaresan, R., and Bentov, I. (2016). Amortizing secure computation
with penalties. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24–28, 2016, pp. 418–429.

52. Kumaresan, R., Vaikuntanathan, V., and Vasudevan, P.N. (2016). Im-
provements to secure computation with penalties. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24–28, 2016, pp. 406–417.

53. Kiayias, A., Zhou, H., and Zikas, V. (2016). Fair and robust multi-party
computation using a global transaction ledger. In Advances in Cryp-
tology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8–12, 2016, Proceedings, Part II, pp. 705–734.
54. Pass, R., and Shelat, A. (2015). Micropayments for decentralized cur-
rencies. In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, Denver, CO, USA, October 12–16,
2015, I. Ray, N. Li, and C. Kruegel, eds. (ACM), pp. 207–218.

55. Hu, K., and Zhang, Z. (2018). Fast lottery-based micropayments for de-
centralized currencies. In Information Security and Privacy - 23rd Austral-
asian Conference, ACISP 2018,Wollongong, NSW, Australia, July 11–13,
2018, Proceedings, pp. 669–686.

56. Chiesa, A., Green, M., Liu, J., Miao, P., Miers, I., and Mishra, P. (2017).
Decentralized anonymous micropayments. In Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part II, pp. 609–642.

57. Banasik, W., Dziembowski, S., and Malinowski, D. (2016). Efficient zero-
knowledge contingent payments in cryptocurrencies without scripts. In
Computer Security - ESORICS 2016 - 21st European Symposium on
Research in Computer Security, Heraklion, Greece, September 26–30,
2016, Proceedings, Part II, pp. 261–280.

58. Poelstra, A. (2017). Scriptless scripts. https://download.wpsoftware.net/
bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf.

59. Malavolta, G., Moreno-Sánchez, P., Schneidewind, C., Kate, A., and
Maffei, M. (2019). Anonymous multi-hop locks for blockchain scalability
and interoperability. In 26th Annual Network and Distributed System Se-
curity Symposium, NDSS2019, San Diego, California, USA, February 24–
27, 2019.

60. Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L.
(2014). Modeling bitcoin contracts by timed automata. In 2014. Proceed-
ings, pp. 7–22.

61. Bigi, G., Bracciali, A., Meacci, G., and Tuosto, E. (2015). Validation of de-
centralised smart contracts through game theory and formal methods. In
Programming Languages with Applications to Biology and Security: Es-
says Dedicated to Pierpaolo Degano on the Occasion of His 65th
Birthday, pp. 142–161.

62. Atzei, N., Bartoletti, M., Lande, S., and Zunino, R. (2018). A formal model
of bitcoin transactions. In Financial Cryptography and Data Security -
22nd International Conference, FC 2018, Nieuwpoort, Curaçao, February
26–March 2, 2018, Revised Selected Papers, pp. 541–560.

63. Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., and Zunino, R. (2018). Sok:
unraveling bitcoin smart contracts. In Principles of Security and Trust -
7th International Conference, POST 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14–20, 2018, Proceedings, pp. 217–242.

64. Atzei, N. (2018). Balzac: bitcoin abstract language, analyzer and
compiler. https://blockchain.unica.it/balzac/.

65. ivy lang.org. (2017). Ivy. https://docs.ivylang.org/bitcoin/.

66. O’Connor, R. (2017). Simplicity: a new language for blockchains. In Pro-
ceedings of the 2017 Workshop on Programming Languages and Anal-
ysis for Security, PLAS@CCS 2017, Dallas, TX, USA, October 30, 2017,
pp. 107–120.

67. Bartoletti, M., and Zunino, R. (2018). Bitml: a calculus for bitcoin smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Can-
ada, October 15–19, 2018, pp. 83–100.

68. Bartoletti, M., Cimoli, T., and Zunino, R. (2018). Fun with bitcoin smart
contracts. In Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice - 8th International Symposium, ISoLA
2018, Limassol, Cyprus, November 5–9, 2018, Proceedings, Part IV,
pp. 432–449.

69. Atzei, N., Bartoletti, M., Lande, S., Yoshida, N., and Zunino, R. (2019).
Developing secure bitcoin contracts with bitml. In Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIG-
SOFT FSE 2019, Tallinn, Estonia, August 26–30, 2019, pp. 1124–1128.

70. Miller, A., and Bentov, I. (2017). Zero-collateral lotteries in bitcoin and
Ethereum. In 2017 IEEE European Symposium on Security and Privacy
Patterns 2, February 12, 2021 45

http://refhub.elsevier.com/S2666-3899(20)30243-9/sref36
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref36
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref36
http://arxiv.org/abs/1905.08833
http://arxiv.org/abs/1809.09805
http://arxiv.org/abs/1809.09805
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref39
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref39
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref39
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref39
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref40
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref40
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3576393
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3576393
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref42
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref42
https://bitcoin.org/en/release/v0.9.0
https://bitcoin.org/en/release/v0.9.0
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref44
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref44
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref44
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref44
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref45
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref45
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref45
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref45
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref46
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref46
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref46
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref46
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref47
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref47
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref47
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref47
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref47
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref48
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref48
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref48
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref48
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref49
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref49
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref49
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref49
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref50
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref50
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref50
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref50
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref51
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref51
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref51
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref51
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref52
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref52
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref52
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref52
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref53
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref53
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref53
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref53
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref53
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref54
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref54
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref54
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref54
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref55
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref55
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref55
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref55
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref56
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref56
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref56
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref56
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref56
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref57
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref57
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref57
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref57
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref57
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref59
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref59
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref59
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref59
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref59
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref60
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref60
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref60
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref61
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref61
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref61
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref61
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref61
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref62
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref62
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref62
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref62
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref63
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref63
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref63
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref63
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref63
https://blockchain.unica.it/balzac/
https://docs.ivylang.org/bitcoin/
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref66
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref66
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref66
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref66
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref67
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref67
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref67
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref67
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref68
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref68
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref68
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref68
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref68
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref69
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref69
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref69
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref69
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref69
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref70
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref70

ll
OPEN ACCESS Review
Workshops, EuroS&P Workshops 2017, Paris, France, April 26–28, 2017
(IEEE), pp. 4–13.

71. Okoye, M.C., and Clark, J. (2018). Toward cryptocurrency lending. In
Financial Cryptography and Data Security - FC 2018 International Work-
shops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2,
2018, Revised Selected Papers, pp. 367–380.

72. Norta, A., Leiding, B., and Lane, A. (2019). Lowering financial inclusion
barriers with a blockchain-based capital transfer system. In IEEE INFO-
COM 2019 - IEEE Conference on Computer Communications Work-
shops, INFOCOM Workshops 2019, Paris, France, April 29 - May 2,
2019 (IEEE), pp. 319–324.

73. Ølnes, S. (2016). Beyond bitcoin enabling smart government using block-
chain technology. In Electronic Government - 15th IFIP WG 8.5 Interna-
tional Conference, EGOV 2016, Guimarães, Portugal, September 5–8,
2016, Proceedings, Vol. 9820 of Lecture Notes in Computer Science
(Springer), pp. 253–264.

74. Ølnes, S., Ubacht, J., and Janssen, M. (2017). Blockchain in government:
benefits and implications of distributed ledger technology for information
sharing. Government Inf. Q. 34, 355–364.

75. Hou, H. (2017). The application of blockchain technology in e-govern-
ment in China. In 26th International Conference on Computer Communi-
cation and Networks, ICCCN 2017, Vancouver, BC, Canada, July 31 -
Aug. 3, 2017 (IEEE), pp. 1–4.

76. Abodei, E., Norta, A., Azogu, I., Udokwu, C., and Draheim, D. (2019).
Blockchain technology for enabling transparent and traceable govern-
ment collaboration in public project processes of developing economies.
In Digital Transformation for a Sustainable Society in the 21st Century -
18th IFIP WG 6.11 Conference on E-Business, E-Services, and E-Soci-
ety, I3E 2019, Trondheim, Norway, September 18–20, 2019, Proceed-
ings, Vol. 11701 of Lecture Notes in Computer Science (Springer),
pp. 464–475.

77. Krogsbøll, M., Borre, L.H., Slaats, T., and Debois, S. (2020). Smart con-
tracts for government processes: case study and prototype implementa-
tion (short paper). In Financial Cryptography and Data Security - 24th In-
ternational Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–
14, 2020 Revised Selected Papers, Vol. 12059 of Lecture Notes in Com-
puter Science (Springer), pp. 676–684.

78. Blass, E., and Kerschbaum, F. (2018). Strain: a secure auction for block-
chains. In Computer Security - 23rd European Symposium on Research
in Computer Security, ESORICS 2018, Barcelona, Spain, September 3–
7, 2018, Proceedings, Part I, pp. 87–110.

79. Galal, H.S., and Youssef, A.M. (2018). Verifiable sealed-bid auction on
the Ethereum blockchain. In Financial Cryptography and Data Security
- FC 2018 International Workshops, BITCOIN, VOTING, and WTSC,
Nieuwpoort, Curaçao, March 2, 2018, Revised Selected Papers,
pp. 265–278.

80. Eberhardt, J., and Tai, S. (2017). On or off the blockchain? insights on off-
chaining computation and data. In Service-Oriented and Cloud
Computing - 6th IFIP WG 2.14 European Conference, ESOCC 2017,
Oslo, Norway, September 27–29, 2017, Proceedings, pp. 3–15.

81. Molina-Jiménez, C., Solaiman, E., Sfyrakis, I., Ng, I., and Crowcroft, J.
(2018). On and off-blockchain enforcement of smart contracts. In Euro-
Par 2018: Parallel Processing Workshops - Euro-Par 2018 International
Workshops, Turin, Italy, August 27–28, 2018, Revised Selected Papers,
Vol. 11339 of Lecture Notes in Computer Science (Springer),
pp. 342–354.

82. Molina-Jiménez, C., Sfyrakis, I., Solaiman, E., Ng, I., Wong, M.W., Chun,
A., and Crowcroft, J. (2018). Implementation of smart contracts using
hybrid architectures with on and off-blockchain components. In 8th
IEEE International Symposium on Cloud and Service Computing, SC2
2018, Paris, France, November 18–21, 2018 (IEEE), pp. 83–90.

83. Li, C., Palanisamy, B., and Xu, R. (2019). Scalable and privacy-preserving
design of on/off-chain smart contracts. In 35th IEEE International Confer-
ence on Data Engineering Workshops, ICDE Workshops 2019, Macao,
China, April 8–12, 2019 (IEEE), pp. 7–12.

84. Norta, A., Hawthorne, D., and Engel, S.L. (2018). A privacy-protecting
data-exchange wallet with ownership- and monetization capabilities. In
46 Patterns 2, February 12, 2021
2018 International Joint Conference on Neural Networks, IJCNN 2018,
Rio de Janeiro, Brazil, July 8–13, 2018 (IEEE), pp. 1–8.

85. Diligence, C. (2020). Ethereum smart contract security best practices.
https://consensys.github.io/smart-contract-best-practices/.

86. OpenZeppelin. (2020). OpenZeppelin: contracts. https://github.com/
OpenZeppelin/openzeppelin-contracts.

87. Wöhrer, M., and Zdun, U. (2018). Design patterns for smart contracts in
the Ethereum ecosystem. In IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), iThings/GreenCom/CPSCom/Smart-
Data 2018, Halifax, NS, Canada, July 30 - August 3, 2018,
pp. 1513–1520.

88. Wöhrer, M., and Zdun, U. (2018). Smart contracts: security patterns in the
Ethereum ecosystem and solidity. In 2018 International Workshop on
Blockchain Oriented Software Engineering, IWBOSE@SANER 2018,
Campobasso, Italy, March 20, 2018, pp. 2–8.

89. Luu, L., Chu, D., Olickel, H., Saxena, P., and Hobor, A. (2016). Making
smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, Vienna, Austria,
October 24–28, 2016, pp. 254–269.

90. Grishchenko, I., Maffei, M., and Schneidewind, C. (2018). A semantic
framework for the security analysis of Ethereum smart contracts. In Prin-
ciples of Security and Trust - 7th International Conference, POST 2018,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14–20, 2018, Pro-
ceedings, pp. 243–269.

91. Mense, A., and Flatscher, M. (2018). Security vulnerabilities in Ethereum
smart contracts. In Proceedings of the 20th International Conference on
Information Integration and Web-Based Applications & Services, iiWAS
2018, Yogyakarta, Indonesia, November 19–21, 2018 (ACM),
pp. 375–380.

92. Dika, A., and Nowostawski, M. (2018). Security vulnerabilities in Ether-
eum smart contracts. In IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), iThings/GreenCom/CPSCom/Smart-
Data 2018, Halifax, NS, Canada, July 30 - August 3, 2018 (IEEE),
pp. 955–962.

93. Pérez, D., and Livshits, B. (2021). Smart contract vulnerabilities: vulner-
able does not imply exploited. In 30th USENIX Security Symposium,
USENIX Security 2021, Vancouver, B.C, Canada, August 11–13, 2021.

94. Groce, A., Feist, J., Grieco, G., and Colburn, M. (2020). What are the
actual flaws in important smart contracts (and how can we find them)?
In Financial Cryptography and Data Security - 24th International Confer-
ence, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020 Revised
Selected Papers, Vol. 12059 of Lecture Notes in Computer Science
(Springer), pp. 634–653.

95. Delmolino, K., Arnett, M., Kosba, A.E., Miller, A., and Shi, E. (2016). Step
by step towards creating a safe smart contract: lessons and insights from
a cryptocurrency lab. In Financial Cryptography and Data Security - FC
2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ
Church, Barbados, February 26, 2016, Revised Selected Papers,
pp. 79–94.

96. Angelo, M.D., Sack, C., and Salzer, G. (2019). Sok: development of
secure smart contracts - lessons from a graduate course. In Financial
Cryptography and Data Security - FC 2019 International Workshops,
VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February 18–22,
2019, Revised Selected Papers, pp. 91–105.

97. Clack, C.D., Bakshi, V.A., and Braine, L. (2016). Smart contract tem-
plates: foundations, design landscape and research directions. http://
arxiv.org/abs/1608.00771.

98. Clack, C.D., Bakshi, V.A., and Braine, L. (2016). Smart contract tem-
plates: essential requirements and design options. http://arxiv.org/abs/
1612.04496.

99. Marino, B., and Juels, A. (2016). Setting standards for altering and undo-
ing smart contracts. In Rule Technologies. Research, Tools, and

http://refhub.elsevier.com/S2666-3899(20)30243-9/sref70
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref70
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref71
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref71
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref71
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref71
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref72
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref72
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref72
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref72
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref72
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref73
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref73
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref73
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref73
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref73
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref74
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref74
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref74
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref75
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref75
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref75
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref75
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref76
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref76
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref76
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref76
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref76
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref76
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref76
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref76
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref77
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref77
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref77
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref77
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref77
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref77
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref78
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref78
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref78
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref78
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref79
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref79
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref79
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref79
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref79
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref80
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref80
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref80
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref80
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref81
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref81
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref81
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref81
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref81
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref81
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref82
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref82
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref82
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref82
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref82
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref83
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref83
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref83
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref83
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref84
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref84
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref84
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref84
https://consensys.github.io/smart-contract-best-practices/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref87
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref87
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref87
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref87
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref87
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref87
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref87
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref88
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref88
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref88
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref88
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref89
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref89
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref89
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref89
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref90
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref90
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref90
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref90
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref90
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref90
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref91
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref91
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref91
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref91
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref91
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref92
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref92
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref92
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref92
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref92
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref92
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref92
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref93
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref93
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref93
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref94
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref94
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref94
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref94
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref94
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref94
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref95
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref95
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref95
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref95
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref95
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref95
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref96
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref96
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref96
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref96
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref96
http://arxiv.org/abs/1608.00771
http://arxiv.org/abs/1608.00771
http://arxiv.org/abs/1612.04496
http://arxiv.org/abs/1612.04496
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref99
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref99

ll
OPEN ACCESSReview
Applications - 10th International Symposium, RuleML 2016, Stony
Brook, NY, USA, July 6–9, 2016. Proceedings, pp. 151–166.

100. Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky,
N., Sagiv, M., and Zohar, Y. (2018). Online detection of effectively call-
back free objects with applications to smart contracts. In Proceedings
of the ACM on Programming Languages, 2 (POPL), pp. 48:1–48:28.

101. Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., and Roscoe, B. (2018). Reg-
uard: finding reentrancy bugs in smart contracts. In Proceedings of the
40th International Conference on Software Engineering: Companion Pro-
ceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
pp. 65–68.

102. Rodler, M., Li, W., Karame, G.O., and Davi, L. (2019). Sereum: protecting
existing smart contracts against re-entrancy attacks. In 26th Annual
Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24–27, 2019.

103. Chen, T., Li, X., Luo, X., and Zhang, X. (2017). Under-optimized smart
contracts devour your money. In IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering, SANER 2017, Klagen-
furt, Austria, February 20–24, 2017, pp. 442–446.

104. Chen, T., Li, Z., Zhou, H., Chen, J., Luo, X., Li, X., and Zhang, X. (2018).
Towards saving money in using smart contracts. In Proceedings of the
40th International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE (NIER) 2018, Gothenburg, Sweden, May 27 -
June 03, 2018, pp. 81–84.

105. Marescotti, M., Blicha,M., Hyv€arinen, A.E.J., Asadi, S., and Sharygina, N.
(2018). Computing exact worst-case gas consumption for smart con-
tracts. In Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice - 8th International Symposium, ISoLA
2018, Limassol, Cyprus, November 5–9, 2018, Proceedings, Part IV,
pp. 450–465.

106. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., and Smaragda-
kis, Y. (2018). Madmax: surviving out-of-gas conditions in Ethereum
smart contracts. In Proceedings of the ACM on Programming Lan-
guages, 2 (OOPSLA), pp. 116:1–116:27.

107. Albert, E., Gordillo, P., Rubio, A., and Sergey, I. (2019). Running on
fumes—preventing out-of-gas vulnerabilities in Ethereum smart con-
tracts using static resource analysis. In Verification and Evaluation of
Computer and Communication Systems - 13th International Conference,
VECoS 2019, Porto, Portugal, October 9, 2019, Proceedings, pp. 63–78.

108. Albert, E., Correas, J., Gordillo, P., Román-Dı́ez, G., and Rubio, A. (2020).
GASOL: gas analysis and optimization for Ethereum smart contracts. In
Tools and Algorithms for the Construction and Analysis of Systems -
26th International Conference, TACAS 2020, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS
2020, Dublin, Ireland, April 25–30, 2020, Proceedings, Part II,
pp. 118–125.

109. Albert, E., Gordillo, P., Rubio, A., and Schett, M.A. (2020). Synthesis of
super-optimized smart contracts using max-smt. In Computer Aided
Verification - 32nd International Conference, CAV 2020, Los Angeles,
CA, USA, July 21–24, 2020, Proceedings, Part I, Vol. 12224 of Lecture
Notes in Computer Science (Springer), pp. 177–200.

110. Chen, T., Feng, Y., Li, Z., Zhou, H., Luo, X., Li, X., Xiao, X., Chen, J., and
Zhang, X. (2020). Gaschecker: scalable analysis for discovering gas-inef-
ficient smart contracts. IEEE Trans. Emerging Top. Comput. 1–14.

111. Nikoli�c, I., Kolluri, A., Sergey, I., Saxena, P., and Hobor, A. (2018). Finding
the greedy, prodigal, and suicidal contracts at scale. In Proceedings of
the 34th Annual Computer Security Applications Conference, ACSAC
2018, San Juan, PR, USA, December 03–07, 2018, pp. 653–663.

112. Kolluri, A., Nikoli�c, I., Sergey, I., Hobor, A., and Saxena, P. (2019). Exploit-
ing the laws of order in smart contracts. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, IS-
STA 2019, Beijing, China, July 15–19, 2019, pp. 363–373.

113. Torres, C.F., Sch€utte, J., and State, R. (2018). Osiris: hunting for integer
bugs in Ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC 2018, San Juan,
PR, USA, December 03–07, 2018, pp. 664–676.
114. So, S., Lee, M., Park, J., Lee, H., and Oh, H. (2020). VERISMART: a highly
precise safety verifier for Ethereum smart contracts. In 2020 IEEE Sym-
posium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18–21, 2020 (IEEE), pp. 1678–1694.

115. Albert, E., Gordillo, P., Livshits, B., Rubio, A., Sergey, I., and Ethir. (2018).
A framework for high-level analysis of Ethereum bytecode. In Automated
Technology for Verification and Analysis - 16th International Symposium,
ATVA 2018, Los Angeles, CA, USA, October 7–10, 2018, Proceedings,
pp. 513–520.

116. Albert, E., Correas, J., Gordillo, P., Román-Dı́ez, G., and Rubio, A. (2019).
SAFEVM: a safety verifier for Ethereum smart contracts. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2019, Beijing, China, July 15–19, 2019, pp. 386–389.

117. Mueller, B. (2018). Smashing Ethereum Smart Contracts for Fun and
ACTUAL Profit (HITB SECCONF Amsterdam). https://conference.hitb.
org/hitbsecconf2018ams/sessions/smashing-ethereum-smart-contracts-
for-fun-and-actual-profit/.

118. Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist,
J., Brunson, T., and Dinaburg, A. (2019). Manticore: a user-friendly sym-
bolic execution framework for binaries and smart contracts. In 34th IEEE/
ACM International Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA, November 11–15, 2019 (IEEE),
pp. 1186–1189.

119. Krupp, J., and Rossow, C. (2018). teether: gnawing at Ethereum to auto-
matically exploit smart contracts. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15–17, 2018,
pp. 1317–1333.

120. Chang, J., Gao, B., Xiao, H., Sun, J., Cai, Y., and Yang, Z. (2019). scom-
pile: critical path identification and analysis for smart contracts. In Formal
Methods and Software Engineering - 21st International Conference on
Formal Engineering Methods, ICFEM 2019, Shenzhen, China, November
5–9, 2019, Proceedings, pp. 286–304.

121. Feng, Y., Torlak, E., and Bodı́k, R. (2019). Precise attack synthesis for
smart contracts. http://arxiv.org/abs/1902.06067.

122. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., B€unzli, F., and
Vechev, M.T. (2018). Securify: practical security analysis of smart con-
tracts. In Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15–19, 2018, pp. 67–82.

123. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., and Ve-
chev, M.T. (2020). Verx: safety verification of smart contracts. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18–21, 2020 (IEEE), pp. 1661–1677.

124. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marche-
nko, E., and Alexandrov, Y. (2018). Smartcheck: static analysis of Ether-
eum smart contracts. In 1st IEEE/ACM International Workshop on
Emerging Trends in Software Engineering for Blockchain, WETSE-
B@ICSE 2018, Gothenburg, Sweden, May 27 - June 3, 2018, pp. 9–16.

125. Lu, N., Wang, B., Zhang, Y., Shi, W., and Esposito, C. (2019). NeuCheck:
a more practical Ethereum smart contract security analysis tool. Softw.
Pract. Experience. https://doi.org/10.1002/spe.2745.

126. Grishchenko, I., Maffei, M., and Schneidewind, C. (2018). Ethertrust:
sound static analysis of Ethereum bytecode. https://secpriv.tuwien.ac.
at/fileadmin/t/secpriv/Papers/post2018-tr.pdf.

127. Grishchenko, I., Maffei, M., and Schneidewind, C. (2018). Foundations
and tools for the static analysis of Ethereum smart contracts. In Com-
puter Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14–17, 2018, Proceedings, Part I, pp. 51–78.

128. Brent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F., Gramoli, V., Holz,
R., and Scholz, B. (2018). Vandal: a scalable security analysis framework
for smart contracts. http://arxiv.org/abs/1809.03981.

129. Grech, N., Brent, L., Scholz, B., and Smaragdakis, Y. (2019). Gigahorse:
thorough, declarative decompilation of smart contracts. In Proceedings
of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25–31, 2019 (IEEE/ACM),
pp. 1176–1186.
Patterns 2, February 12, 2021 47

http://refhub.elsevier.com/S2666-3899(20)30243-9/sref99
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref99
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref100
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref100
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref100
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref100
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref101
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref101
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref101
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref101
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref101
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref102
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref102
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref102
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref102
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref103
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref103
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref103
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref103
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref104
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref104
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref104
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref104
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref104
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref105
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref105
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref105
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref105
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref105
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref105
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref105
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref106
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref106
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref106
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref106
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref107
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref107
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref107
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref107
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref107
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref108
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref108
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref108
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref108
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref108
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref108
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref108
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref109
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref109
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref109
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref109
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref109
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref110
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref110
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref110
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref111
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref111
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref111
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref111
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref111
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref112
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref112
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref112
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref112
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref112
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref113
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref113
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref113
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref113
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref113
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref114
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref114
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref114
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref114
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref115
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref115
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref115
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref115
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref115
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref116
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref116
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref116
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref116
https://conference.hitb.org/hitbsecconf2018ams/sessions/smashing-ethereum-smart-contracts-for-fun-and-actual-profit/
https://conference.hitb.org/hitbsecconf2018ams/sessions/smashing-ethereum-smart-contracts-for-fun-and-actual-profit/
https://conference.hitb.org/hitbsecconf2018ams/sessions/smashing-ethereum-smart-contracts-for-fun-and-actual-profit/
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref118
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref118
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref118
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref118
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref118
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref118
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref119
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref119
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref119
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref119
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref120
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref120
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref120
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref120
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref120
http://arxiv.org/abs/1902.06067
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref122
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref122
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref122
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref122
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref122
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref122
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref123
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref123
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref123
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref123
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref124
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref124
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref124
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref124
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref124
https://doi.org/10.1002/spe.2745
https://secpriv.tuwien.ac.at/fileadmin/t/secpriv/Papers/post2018-tr.pdf
https://secpriv.tuwien.ac.at/fileadmin/t/secpriv/Papers/post2018-tr.pdf
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref127
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref127
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref127
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref127
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref127
http://arxiv.org/abs/1809.03981
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref129
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref129
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref129
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref129
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref129

ll
OPEN ACCESS Review
130. Schneidewind, C., Grishchenko, I., Scherer, M., Maffei, M., and ethor.
(2020). Practical and provably sound static analysis of Ethereum smart
contracts. In CCS ’20: 2020 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, USA, November 9–13,
2020 (ACM), pp. 621–640.

131. Feist, J., Grieco, G., and Groce, A. (2019). Slither: a static analysis frame-
work for smart contracts. In Proceedings of the 2nd International Work-
shop on Emerging Trends in Software Engineering for Blockchain, WET-
SEB@ICSE 2019, Montreal, QC, Canada, May 27, 2019, pp. 8–15.

132. Zhou, E., Hua, S., Pi, B., Sun, J., Nomura, Y., Yamashita, K., and Kuri-
hara, H. (2018). Security assurance for smart contract. In 9th IFIP Interna-
tional Conference on New Technologies, Mobility and Security, NTMS
2018, Paris, France, February 26–28, 2018, pp. 1–5.

133. Nehai, Z., Piriou, P., and Daumas, F.F. (2018). Model-checking of smart
contracts. In IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), iThings/GreenCom/CPSCom/SmartData 2018, Halifax,
NS, Canada, July 30 - August 3, 2018, pp. 980–987.

134. Kalra, S., Goel, S., Dhawan, M., and Sharma, S. (2018). ZEUS: analyzing
safety of smart contracts. In 25th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2018, San Diego, California, USA,
February 18–21, 2018.

135. Nehai, Z., and Bobot, F. (2019). Deductive proof of Ethereum smart con-
tracts using why3. http://arxiv.org/abs/1904.11281.

136. Alt, L., and Reitwießner, C. (2018). Smt-based verification of solidity
smart contracts. In Leveraging Applications of Formal Methods, Verifica-
tion and Validation. Industrial Practice - 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5–9, 2018, Proceedings,
Part IV, pp. 376–388.

137. Jiang, B., Liu, Y., and Chan, W.K. (2018). Contractfuzzer: fuzzing smart
contracts for vulnerability detection. In Proceedings of the 33rd ACM/
IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, September 3–7, 2018, pp. 259–269.

138. He, J., Balunovic, M., Ambroladze, N., Tsankov, P., and Vechev, M.T.
(2019). Learning to fuzz from symbolic execution with application to
smart contracts. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK,
November 11–15, 2019, pp. 531–548.

139. Grieco, G., Song, W., Cygan, A., Feist, J., and Groce, A. (2020). Echidna:
effective, usable, and fast fuzzing for smart contracts. In ISSTA ’20: 29th
ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis, Virtual Event, USA, July 18–22, 2020 (ACM), pp. 557–560.

140. Kosba, A.E., Miller, A., Shi, E., Wen, Z., and Papamanthou, C. (2016).
Hawk: the blockchain model of cryptography and privacy-preserving
smart contracts. In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22–26, 2016, pp. 839–858.

141. Eberhardt, J., and Tai, S. (2018). Zokrates: scalable privacy-preserving
off-chain computations. In IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), iThings/GreenCom/CPSCom/Smart-
Data 2018, Halifax, NS, Canada, July 30 - August 3, 2018,
pp. 1084–1091.

142. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier,
G., Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N.,
and Béguelin, S.Z. (2016). Formal verification of smart contracts: short
paper. In Proceedings of the 2016 ACMWorkshop on Programming Lan-
guages and Analysis for Security, PLAS@CCS 2016, Vienna, Austria,
October 24, 2016, pp. 91–96.

143. Chatterjee, K., Goharshady, A.K., and Velner, Y. (2018). Quantitative
analysis of smart contracts. In Programming Languages and Systems -
27th European Symposium on Programming, ESOP 2018, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14–20, 2018, Proceedings,
pp. 739–767.

144. Mavridou, A., and Laszka, A. (2018). Designing secure Ethereum smart
contracts: a finite state machine based approach. In Financial Cryptog-
48 Patterns 2, February 12, 2021
raphy and Data Security - 22nd International Conference, FC 2018,
Nieuwpoort, Curaçao, February 26 - March 2, 2018, Revised Selected
Papers, pp. 523–540.

145. Mavridou, A., Laszka, A., Stachtiari, E., and Dubey, A. (2019). Verisolid:
correct-by-design smart contracts for Ethereum. In Financial Cryptog-
raphy and Data Security - 23rd International Conference, FC 2019, Frig-
ate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised Selected Pa-
pers, pp. 446–465.

146. Xu, W., and Fink, G.A. (2019). Building executable secure design models
for smart contracts with formal methods. In Financial Cryptography and
Data Security - FC 2019 International Workshops, VOTING and WTSC,
St. Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised Selected Pa-
pers, pp. 154–169.

147. Banach, R. (2019). Verification-led smart contracts. In Financial Cryptog-
raphy and Data Security - FC 2019 International Workshops, VOTING
and WTSC, St. Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers, pp. 106–121.

148. Spoto, F. (2019). A java framework for smart contracts. In Financial Cryp-
tography and Data Security - FC 2019 International Workshops, VOTING
and WTSC, St. Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers, pp. 122–137.

149. Yang, Z., and Lei, H. (2019). Fether: an extensible definitional interpreter
for smart-contract verifications in coq. IEEE Access 7, 37770–37791.

150. Pettersson, J., and Edström, R. (2016). Safer Smart Contracts through
Type-Driven Development, Master’s Thesis, Master’s thesis (Chalmers
University of Technology & University of Gothenburg).

151. Biryukov, A., Khovratovich, D., and Tikhomirov, S. (2017). Findel: secure
derivative contracts for Ethereum. In Financial Cryptography and Data
Security - FC 2017 International Workshops, WAHC, BITCOIN, VOTING,
WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers,
pp. 453–467.

152. Yang, Z., and Lei, H. (2018). Lolisa: formal syntax and semantics for a
subset of the solidity programming language. http://arxiv.org/abs/
1803.09885.

153. Schrans, F., Eisenbach, S., and Drossopoulou, S. (2018). Writing safe
smart contracts in flint. In ConferenceCompanion of the 2nd International
Conference on Art, Science, and Engineering of Programming, Nice,
France, April 09–12, 2018, pp. 218–219.

154. Crafa, S., Pirro, M.D., and Zucca, E. (2019). Is solidity solid enough? In
Financial Cryptography and Data Security - FC 2019 International Work-
shops, VOTING andWTSC, St. Kitts, St. Kitts and Nevis, February 18–22,
2019, Revised Selected Papers, pp. 138–153.

155. Sergey, I., Kumar, A., and Hobor, A. (2018). Scilla: a smart contract inter-
mediate-level language. http://arxiv.org/abs/1801.00687.

156. Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., and Hao,
K.C.G. (2019). Safer smart contract programming with scilla. In Proceed-
ings of the ACM on Programming Languages, 3 (OOPSLA),
pp. 185:1–185:30.

157. Hirai, Y. (2017). Defining the Ethereum virtual machine for interactive the-
orem provers. In Financial Cryptography and Data Security - FC 2017 In-
ternational Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sli-
ema, Malta, April 7, 2017, Revised Selected Papers, pp. 520–535.

158. Amani, S., Bégel, M., Bortin, M., and Staples, M. (2018). Towards veri-
fying Ethereum smart contract bytecode in isabelle/hol. In Proceedings
of the 7th ACMSIGPLAN International Conference on Certified Programs
and Proofs, CPP 2018, Los Angeles, CA, USA, January 8–9, 2018,
pp. 66–77.

159. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D.,
Moore, B.M., Park, D., Zhang, Y., Stefanescu, A., and Rosu, G. (2018).
KEVM: a complete formal semantics of the Ethereum virtual machine.
In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Ox-
ford, United Kingdom, July 9–12, 2018, pp. 204–217.

160. Zyskind, G., and Pentland, A. (2018). Enigma: decentralized computation
platform with guaranteed privacy. In New Solutions for Cybersecurity, H.
Shrobe, D.L. Shrier, and A. Pentland, eds. (MIT Press), pp. 425–454.

http://refhub.elsevier.com/S2666-3899(20)30243-9/sref130
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref130
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref130
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref130
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref130
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref131
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref131
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref131
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref131
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref132
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref132
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref132
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref132
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref133
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref133
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref133
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref133
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref133
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref133
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref134
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref134
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref134
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref134
http://arxiv.org/abs/1904.11281
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref136
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref136
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref136
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref136
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref136
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref137
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref137
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref137
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref137
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref138
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref138
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref138
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref138
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref138
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref139
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref139
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref139
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref139
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref140
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref140
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref140
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref140
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref141
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref141
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref141
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref141
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref141
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref141
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref141
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref142
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref142
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref142
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref142
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref142
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref142
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref143
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref143
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref143
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref143
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref143
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref143
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref144
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref144
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref144
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref144
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref144
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref145
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref145
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref145
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref145
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref145
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref146
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref146
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref146
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref146
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref146
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref147
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref147
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref147
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref147
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref148
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref148
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref148
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref148
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref149
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref149
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref150
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref150
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref150
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref151
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref151
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref151
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref151
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref151
http://arxiv.org/abs/1803.09885
http://arxiv.org/abs/1803.09885
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref153
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref153
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref153
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref153
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref154
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref154
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref154
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref154
http://arxiv.org/abs/1801.00687
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref156
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref156
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref156
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref156
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref157
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref157
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref157
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref157
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref158
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref158
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref158
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref158
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref158
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref159
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref159
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref159
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref159
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref159
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref160
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref160
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref160

ll
OPEN ACCESSReview
161. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., and Miers, I. (2017).
Fairness in an unfair world: fair multiparty computation from public
bulletin boards. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30–November 3, 2017, pp. 719–728.

162. Sánchez, D.C. (2018). Raziel: private and verifiable smart contracts on
blockchains. http://arxiv.org/abs/1807.09484.

163. Brandenburger, M., Cachin, C., Kapitza, R., and Sorniotti, A. (2018).
Blockchain and trusted computing: problems, pitfalls, and a solution
for hyperledger fabric. http://arxiv.org/abs/1805.08541.

164. Bowman, M., Miele, A., Steiner, M., and Vavala, B. (2018). Private data
objects: an overview. http://arxiv.org/abs/1807.05686.

165. Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N.M., Juels,
A., Miller, A., and Song, D. (2019). Ekiden: a platform for confidentiality-
preserving, trustworthy, and performant smart contracts. In IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2019, Stockholm,
Sweden, June 17–19, 2019, pp. 185–200.

166. Das, P., Eckey, L., Frassetto, T., Gens, D., Hostáková, K., Jauernig, P.,
Faust, S., and Sadeghi, A. (2019). Fastkitten: practical smart contracts
on bitcoin. In 28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14–16, 2019, pp. 801–818.

167. Kaptchuk, G., Green, M., and Miers, I. (2019). Giving state to the state-
less: augmenting trustworthy computation with ledgers. In 26th Annual
Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24–27, 2019.

168. Lind, J., Naor, O., Eyal, I., Kelbert, F., Sirer, E.G., and Pietzuch, P.R.
(2019). Teechain: a secure payment network with asynchronous block-
chain access. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27–
30, 2019, pp. 63–79.

169. Decker, C., and Wattenhofer, R. (2015). A fast and scalable payment
network with bitcoin duplex micropayment channels. In Stabilization,
Safety, and Security of Distributed Systems - 17th International Sympo-
sium, SSS 2015, Edmonton, AB, Canada, August 18–21, 2015, Proceed-
ings, pp. 3–18.

170. McCorry, P., Möser, M., Shahandashti, S.F., and Hao, F. (2016). Towards
bitcoin payment networks. In Information Security and Privacy - 21st
Australasian Conference, ACISP 2016, Melbourne, VIC, Australia, July
4–6, 2016, Proceedings, Part I, pp. 57–76.

171. Heilman, E., Baldimtsi, F., and Goldberg, S. (2016). Blindly signed con-
tracts: anonymous on-blockchain and off-blockchain bitcoin transac-
tions. In Financial Cryptography and Data Security - FC 2016 Interna-
tional Workshops, BITCOIN, VOTING, and WAHC, Christ Church,
Barbados, February 26, 2016, Revised Selected Papers, pp. 43–60.

172. Green, M., and Miers, I. (2017). Bolt: anonymous payment channels for
decentralized currencies. In Proceedings of the 2017 ACMSIGSAC Con-
ference on Computer and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017, pp. 473–489.

173. Malavolta, G., Moreno-Sánchez, P., Kate, A., Maffei, M., and Ravi, S.
(2017). Concurrency and privacywith payment-channel networks. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pp. 455–471.

174. Tremback, J., and Hess, Z. (2015). Universal payment channels. http://
jtremback.github.io/universal-payment-channels/universal-payment-
channels.pdf.

175. Peterson, D. (2016). Sparky: a lightning network in two pages of solidity.
https://www.blunderingcode.com/a-lightning-network-in-two-pages-
of-solidity/.

176. Raiden Network (2017). What is the Raiden network?. https://raiden.
network/101.html.

177. Dziembowski, S., Eckey, L., Faust, S., and Malinowski, D. (2019). Perun:
virtual payment hubs over cryptocurrencies. In 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19–23,
2019 (IEEE), pp. 106–123.
178. Bentov, I., Kumaresan, R., andMiller, A. (2017). Instantaneous decentral-
ized poker. In Advances in Cryptology - ASIACRYPT 2017 - 23rd Interna-
tional Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3–7, 2017,
Proceedings, Part II, pp. 410–440.

179. Dziembowski, S., Faust, S., and Hostáková, K. (2018). General state
channel networks. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15–19, 2018 (ACM), pp. 949–966.

180. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., and McCorry, P. (2019).
Sprites and state channels: payment networks that go faster than light-
ning. In Financial Cryptography and Data Security - 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22,
2019, Revised Selected Papers, pp. 508–526.

181. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., and Hostáková, K.
(2019). Multi-party virtual state channels. In Advances in Cryptology -
EUROCRYPT 2019 - 38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19–23, 2019, Proceedings, Part I, pp. 625–656.

182. Close, T., and Stewart, A. (2018). Forcemove: an n-party state channel
protocol. https://magmo.com/force-move-games.pdf.

183. McCorry, P., Buckland, C., Bakshi, S., W€ust, K., andMiller, A. (2019). You
sank my battleship! A case study to evaluate state channels as a scaling
solution for cryptocurrencies. In Financial Cryptography and Data Secu-
rity - FC 2019 International Workshops, VOTING and WTSC, St. Kitts, St.
Kitts and Nevis, February 18–22, 2019, Revised Selected Papers, Vol.
11599 of Lecture Notes in Computer Science (Springer), pp. 35–49.

184. Buckland, C., and McCorry, P. (2019). Two-party state channels with as-
sertions. In Financial Cryptography and Data Security - FC 2019 Interna-
tional Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis,
February 18–22, 2019, Revised Selected Papers, pp. 3–11.

185. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., and Miller, A. (2019).
Pisa: arbitration outsourcing for state channels. In Proceedings of the
1st ACM Conference on Advances in Financial Technologies, AFT
2019, Zurich, Switzerland, October 21–23, 2019, pp. 16–30.

186. Möser, M., Eyal, I., and Sirer, E.G. (2016). Bitcoin covenants. In Financial
Cryptography andData Security - FC 2016 InternationalWorkshops, BIT-
COIN, VOTING, and WAHC, Christ Church, Barbados, February 26,
2016, Revised Selected Papers, pp. 126–141.

187. O’Connor, R., and Piekarska, M. (2017). Enhancing bitcoin transactions
with covenants. In Financial Cryptography and Data Security - FC 2017
International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sli-
ema, Malta, April 7, 2017, Revised Selected Papers, pp. 191–198.

188. Fynn, E., Bessani, A., and Pedone, F. (2020). Smart contracts on the
move. In 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2020, Valencia, Spain, June 29 - July 2,
2020 (IEEE), pp. 233–244.

189. Westerkamp, M. (2019). Verifiable smart contract portability. In IEEE In-
ternational Conference on Blockchain and Cryptocurrency, ICBC 2019,
Seoul, Korea (South), May 14–17, 2019, pp. 1–9.

190. Dickerson, T.D., Gazzillo, P., Herlihy, M., Saraph, V., and Koskinen, E.
(2018). Proof-carrying smart contracts. In Financial Cryptography and
Data Security - FC 2018 International Workshops, BITCOIN, VOTING,
and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected Pa-
pers, pp. 325–338.

191. Kalodner, H.A., Goldfeder, S., Chen, X.,Weinberg, S.M., and Felten, E.W.
(2018). Arbitrum: scalable, private smart contracts. In 27th USENIX Secu-
rity Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15–
17, 2018, pp. 1353–1370.

192. Das, S., Ribeiro, V.J., and Anand, A. (2019). YODA: enabling computa-
tionally intensive contracts on blockchains with byzantine and selfish no-
des. In 26th Annual Network and Distributed System Security Sympo-
sium, NDSS 2019, San Diego, California, USA, February 24–27, 2019.

193. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., and Wu, H. (2020).
ZEXE: enabling decentralized private computation. In 2020 IEEE Sympo-
sium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18–21, 2020 (IEEE), pp. 947–964.
Patterns 2, February 12, 2021 49

http://refhub.elsevier.com/S2666-3899(20)30243-9/sref161
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref161
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref161
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref161
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref161
http://arxiv.org/abs/1807.09484
http://arxiv.org/abs/1805.08541
http://arxiv.org/abs/1807.05686
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref165
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref165
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref165
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref165
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref165
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref166
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref166
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref166
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref166
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref167
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref167
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref167
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref167
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref168
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref168
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref168
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref168
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref168
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref169
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref169
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref169
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref169
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref169
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref170
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref170
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref170
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref170
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref171
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref171
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref171
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref171
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref171
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref172
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref172
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref172
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref172
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref173
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref173
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref173
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref173
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref173
http://jtremback.github.io/universal-payment-channels/universal-payment-channels.pdf
http://jtremback.github.io/universal-payment-channels/universal-payment-channels.pdf
http://jtremback.github.io/universal-payment-channels/universal-payment-channels.pdf
https://www.blunderingcode.com/a-lightning-network-in-two-pages-of-solidity/
https://www.blunderingcode.com/a-lightning-network-in-two-pages-of-solidity/
https://raiden.network/101.html
https://raiden.network/101.html
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref177
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref177
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref177
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref177
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref178
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref178
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref178
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref178
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref178
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref179
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref179
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref179
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref179
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref180
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref180
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref180
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref180
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref180
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref181
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref181
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref181
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref181
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref181
https://magmo.com/force-move-games.pdf
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref183
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref183
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref183
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref183
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref183
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref183
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref183
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref184
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref184
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref184
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref184
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref185
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref185
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref185
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref185
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref186
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref186
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref186
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref186
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref187
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref187
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref187
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref187
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref188
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref188
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref188
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref188
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref189
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref189
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref189
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref190
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref190
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref190
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref190
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref190
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref191
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref191
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref191
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref191
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref192
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref192
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref192
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref192
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref193
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref193
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref193
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref193

ll
OPEN ACCESS Review
194. W€ust, K., Matetic, S., Egli, S., Kostiainen, K., and Capkun, S. (2020). ACE:
asynchronous and concurrent execution of complex smart contracts. In
CCS ’20: 2020 ACMSIGSACConference on Computer and Communica-
tions Security, Virtual Event, USA, November 9–13, 2020 (ACM),
pp. 587–600.

195. Gavin, A. (2012). Bip16: pay to script hash. https://en.bitcoin.it/wiki/
BIP_0016.

196. Bitcoin Forum. (2014). Ascii art. https://bitcointalk.org/index.php?
topic=568304.0.

197. Canetti, R. (2001). Universally composable security: a new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, 14–17 October 2001, Las Vegas, Ne-
vada, USA, pp. 136–145.

198. Jourenko, M., Kurazumi, K., Larangeira, M., and Tanaka, K. (2019). Sok: a
taxonomy for layer-2 scalability related protocols for cryptocurrencies.
https://eprint.iacr.org/2019/352.

199. Schnorr, C. (1989). Efficient identification and signatures for smart cards.
In Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20–24, 1989,
Proceedings, Vol. 435 of Lecture Notes in Computer Science, G. Bras-
sard, ed. (Springer), pp. 239–252.

200. Behrmann, G., David, A., and Larsen, K.G. (2004). A tutorial on uppaal. In
Formal Methods for the Design of Real-Time Systems, International
School on Formal Methods for the Design of Computer, Communication
and Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13–
18, 2004, Revised Lectures, pp. 200–236.

201. Coq Development Team (2020). The coq proof assistant. https://coq.
inria.fr/.

202. Edgington, B. (2017). Documentation for the lll compiler. https://lll-docs.
readthedocs.io/en/latest/index.html.

203. Qureshi, H. (2020). Flash loans: why flash attacks will be the new normal.
https://medium.com/dragonfly-research/flash-loans-why-flash-attacks-
will-be-the-new-normal-5144e23ac75a.

204. Fischlin, M. (2001). A cost-effective pay-per-multiplication comparison
method formillionaires. In Topics in Cryptology - CT-RSA 2001, the Cryp-
tographer’s Track at RSA Conference 2001, San Francisco, CA, USA,
April 8–12, 2001, Proceedings, pp. 457–472.

205. Pedersen, T.P. (1991). Non-interactive and information-theoretic secure
verifiable secret sharing. In Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11–15, 1991, Proceedings, Vol. 576 of Lecture Notes in
Computer Science, J. Feigenbaum, ed. (Springer), pp. 129–140.

206. Vogelsteller, F., and Buterin, V. (2015). Eip-20: Erc-20 token standard.
https://eips.ethereum.org/EIPS/eip-20.

207. CoinDesk. (2020). What is defi?. https://www.coindesk.com/what-
is-defi.

208. Sillaber, C., and Waltl, B. (2017). Life cycle of smart contracts in block-
chain ecosystems. Datenschutz und Datensicherheit 41, 497–500.

209. Filliâtre, J., and Paskevich, A. (2013). Why3—where programs meet
provers. In Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16–24, 2013. Proceedings, pp. 125–128.

210. (2017). Vyper documentation. https://vyper.readthedocs.io/en/stable/.

211. Massalin, H. (1987). Superoptimizer—a look at the smallest program. In
Proceedings of the Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
II), Palo Alto, California, USA, October 5–8, 1987, R.H. Katz and M.
Freeman, eds. (ACM Press), pp. 122–126.

212. Zhu, R., Ding, C., and Huang, Y. (2019). Efficient publicly verifiable 2pc
over a blockchain with applications to financially-secure computations.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11–
15, 2019 (ACM), pp. 633–650.
50 Patterns 2, February 12, 2021
213. Solar-Lezama, A., Tancau, L., Bodı́k, R., Seshia, S.A., and Saraswat, V.A.
(2006). Combinatorial sketching for finite programs. In Proceedings of the
12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA,
October 21–25, 2006, pp. 404–415.

214. ETAPS (2019). Competition on software verification (sv-comp). https://
sv-comp.sosy-lab.org/2019/index.php.

215. Mueller, B. (2018). Mythril. https://github.com/ConsenSys/mythril.

216. Mueller, B. (2018). Laser-ethereum: symbolic virtual machine for Ether-
eum. https://github.com/b-mueller/laser-ethereum.

217. Ethereum Foundation (2019). Ethereum contract ABI. https://github.
com/ethereum/wiki/wiki/Ethereum-Contract-ABI.

218. Aho, A.V., Sethi, R., and Ullman, J.D. (1986). Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley Series in Computer Science/World
Student Series Edition (Addison-Wesley).

219. Clark, J., and DeRose, S. (1999). Xml path language (xpath). http://new-
design.renderx.com/files/demos/xmlspec/xpath/REC-xpath-
19991116.pdf.

220. ConsenSys. (2017). Solidity parser. https://github.com/ConsenSys/
solidity-parser.

221. Cimatti, A., Clarke, E.M., Giunchiglia, F., and Roveri, M. (1999). NUSMV:
a new symbolic model verifier. In Computer Aided Verification, 11th Inter-
national Conference, CAV ’99, Trento, Italy, July 6–10, 1999, Proceed-
ings, pp. 495–499.

222. Lamport, L. (2002). Specifying Systems, the TLA+ Language and Tools
for Hardware and Software Engineers (Addison-Wesley).

223. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., and Virza, M. (2013).
Snarks for C: verifying program executions succinctly and in zero knowl-
edge. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 18–22, 2013. Pro-
ceedings, Part II, pp. 90–108.

224. Parno, B., Howell, J., Gentry, C., and Raykova, M. (2013). Pinocchio:
nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, SP 2013, Berkeley, CA, USA, May 19–22, 2013,
pp. 238–252.

225. Ahman, D. (2016). F*: verification system for effectful programs. https://
fstar-lang.org.

226. Abrial, J. (2010). Modeling in Event-B: System and Software Engineering
(Cambridge University Press).

227. Brady, E. (2013). Idris, a general-purpose dependently typed program-
ming language: design and implementation. J. Funct. Program 23,
552–593.

228. Nipkow, T., Paulson, L.C., and Wenzel, M. (2002). Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, Vol. 2283 of Lecture Notes in Computer
Science (Springer).

229. Rosu, G., and Serbanuta, T. (2010). An overview of the K semantic frame-
work. J. Log. Algebr. Program 79, 397–434.

230. Ethereum Foundation (2020). Ethereum tests. https://github.com/
ethereum/tests.

231. Buterin, V. (2017). Blockchain and smart contract mechanism design
challenges. https://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf.

232. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
and Virza, M. (2014). Zerocash: decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP
2014, Berkeley, CA, USA, May 18–21, 2014, pp. 459–474.

233. Yu, H., Zhang, Z., and Liu, J. (2017). Research on scaling technology of
bitcoin blockchain. J. Computer Res. Development 54, 2390–2403.

234. Lombrozo, E., Lau, J., and Wuille, P. (2015). Bip 141: segregated witness
(consensus layer). https://github.com/bitcoin/bips/blob/master/bip-
0141.mediawiki.

http://refhub.elsevier.com/S2666-3899(20)30243-9/sref194
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref194
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref194
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref194
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref194
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref194
https://en.bitcoin.it/wiki/BIP_0016
https://en.bitcoin.it/wiki/BIP_0016
https://bitcointalk.org/index.php?topic=568304.0
https://bitcointalk.org/index.php?topic=568304.0
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref197
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref197
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref197
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref197
https://eprint.iacr.org/2019/352
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref199
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref199
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref199
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref199
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref199
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref200
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref200
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref200
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref200
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref200
https://coq.inria.fr/
https://coq.inria.fr/
https://lll-docs.readthedocs.io/en/latest/index.html
https://lll-docs.readthedocs.io/en/latest/index.html
https://medium.com/dragonfly-research/flash-loans-why-flash-attacks-will-be-the-new-normal-5144e23ac75a
https://medium.com/dragonfly-research/flash-loans-why-flash-attacks-will-be-the-new-normal-5144e23ac75a
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref204
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref204
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref204
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref204
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref205
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref205
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref205
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref205
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref205
https://eips.ethereum.org/EIPS/eip-20
https://www.coindesk.com/what-is-defi
https://www.coindesk.com/what-is-defi
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref208
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref208
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref209
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref209
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref209
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref209
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref209
https://vyper.readthedocs.io/en/stable/
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref211
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref211
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref211
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref211
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref211
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref212
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref212
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref212
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref212
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref212
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref213
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref213
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref213
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref213
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref213
https://sv-comp.sosy-lab.org/2019/index.php
https://sv-comp.sosy-lab.org/2019/index.php
https://github.com/ConsenSys/mythril
https://github.com/b-mueller/laser-ethereum
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref218
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref218
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref218
http://new-design.renderx.com/files/demos/xmlspec/xpath/REC-xpath-19991116.pdf
http://new-design.renderx.com/files/demos/xmlspec/xpath/REC-xpath-19991116.pdf
http://new-design.renderx.com/files/demos/xmlspec/xpath/REC-xpath-19991116.pdf
https://github.com/ConsenSys/solidity-parser
https://github.com/ConsenSys/solidity-parser
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref221
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref221
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref221
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref221
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref222
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref222
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref223
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref223
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref223
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref223
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref223
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref224
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref224
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref224
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref224
https://fstar-lang.org
https://fstar-lang.org
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref226
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref226
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref227
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref227
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref227
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref228
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref228
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref228
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref229
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref229
https://github.com/ethereum/tests
https://github.com/ethereum/tests
https://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref232
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref232
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref232
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref232
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref233
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref233
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

ll
OPEN ACCESSReview
235. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A.,
Poelstra, A., Timón, J., andWuille, P. (2014). Enabling blockchain innova-
tions with pegged sidechains. http://www.opensciencereview.com/
papers/123/enablingblockchain-innovations-with-pegged-sidechains.

236. Teutsch, J., Straka, M., and Boneh, D. (2019). Retrofitting a two-way peg
between blockchains. http://arxiv.org/abs/1908.03999.

237. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., and Saxena, P.
(2016). A secure sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, Vienna, Austria, October 24–28, 2016 (ACM), pp. 17–30.

238. Necula, G.C. (1997). Proof-carrying code. In Conference Record of
POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Papers Presented at the Symposium, Paris,
France, 15–17 January 1997, pp. 106–119.

239. B€unz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell, G.
(2017). Bulletproofs: efficient range proofs for confidential transactions.
https://cryptopapers.info/assets/pdf/bulletproofs.pdf.

240. Costan, V., and Devadas, S. (2016). Intel sgx explained. https://eprint.
iacr.org/2016/086.pdf.

241. ARM Limited (2009). Security technology: building a secure system using
trustzone technology. http://infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf.

242. Bulck, J.V., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F.,
Silberstein, M., Wenisch, T.F., Yarom, Y., and Strackx, R. (2019).
Breaking virtual memory protection and the SGX ecosystem with fore-
shadow. IEEE Micro 39, 66–74.

243. ElementsProject (2016). A Lightning Network implementation in C.
https://github.com/ElementsProject/lightning.

244. ACINQ (2017). A Scala implementation of the Lightning Network. https://
github.com/ACINQ/eclair.

245. Boldyreva, A. (2003). Threshold signatures, multisignatures and blind sig-
natures based on the Gap-Diffie-Hellman-group signature scheme. In
Public Key Cryptography - PKC 2003, 6th International Workshop on
Theory and Practice in Public Key Cryptography, Miami, FL, USA,
January 6–8, 2003, Proceedings, pp. 31–46.

246. Khalil, R., andGervais, A. (2017). Revive: rebalancing off-blockchain pay-
ment networks. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pp. 439–453.

247. Subramanian, L.M., Eswaraiah, G., and Vishwanathan, R. (2019). Reba-
lancing in acyclic payment networks. In 17th International Conference
on Privacy, Security and Trust, PST 2019, Fredericton, NB, Canada,
August 26–28, 2019 (IEEE), pp. 1–5.

248. Coleman, J. (2015). State channels. https://www.jeffcoleman.ca/state-
channels/.

249. Allison, I. (2016). Ethereum’s Vitalik Buterin explains how state channels
address privacy and scalability. https://www.ibtimes.co.uk/ethereums-
vitalik-buterin-explains-how-state-channels-address-privacy-
scalability-1566068.

250. Coleman, J., Horne, L., and Xuanji, L. (2018). Counterfactual: generalized
state channels. https://l4.ventures/papers/statechannels.pdf.

251. Dryja, T., and Milano, S.B. (2016). Unlinkable outsourced channel moni-
toring. https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-
outsourced-channel-monitoring.

252. Osuntokun, O. (2018). Hardening lightning. https://cyber.stanford.edu/
sites/g/files/sbiybj9936/f/hardening_lightning_updated.pdf.

253. Ateniese, G., Magri, B., Venturi, D., and Andrade, E.R. (2017). Redactable
blockchain—or—rewriting history in bitcoin and friends. In 2017 IEEE Eu-
ropean Symposium on Security and Privacy, EuroS&P 2017, Paris,
France, April 26–28, 2017 (IEEE), pp. 111–126.

254. Poon, J., and Buterin, V. (2017). Plasma: scalable autonomous smart
contracts. https://www.plasma.io/plasma-deprecated.pdf.

255. Kwon, J., and Buchman, E. (2016). Cosmos: a network of distributed led-
gers. https://cosmos.network/whitepaper.

256. Wood, G. (2016). Polkadot: vision for a heterogeneousmulti-chain frame-
work. https://polkadot.network/PolkaDotPaper.pdf.

257. Schindler, P., Judmayer, A., Stifter, N., and Weippl, E.R. (2019).
ETHDKG: distributed key generation with Ethereum smart contracts.
https://eprint.iacr.org/2019/985.

258. Sun, S., Au, M.H., Liu, J.K., and Yuen, T.H. (2017). Ringct 2.0: a compact
accumulator-based (linkable ring signature) protocol for blockchain cryp-
tocurrency monero. In Computer Security - ESORICS 2017 - 22nd Euro-
pean Symposium on Research in Computer Security, Oslo, Norway,
September 11–15, 2017, Proceedings, Part II, Vol. 10493 of Lecture
Notes in Computer Science (Springer), pp. 456–474.

259. Kerber, T., Kiayias, A., and Kohlweiss, M. (2020). Kachina—foundations
of private smart contracts, to appear at CSF’ 21 https://eprint.iacr.org/
2020/543.pdf.

260. Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meikle-
john, S., and Danezis, G. (2019). Sok: consensus in the age of block-
chains. In Proceedings of the 1st ACMConference on Advances in Finan-
cial Technologies, AFT 2019, Zurich, Switzerland, October 21–23, 2019,
pp. 183–198.

261. Yaga, D., Mell, P., Roby, N., and Scarfone, K. (2018). Blockchain technol-
ogy overview, nISTIR 8202. 10.6028/NIST.IR.8202.

262. Garay, J.A., Kiayias, A., and Sok. (2020). A consensus taxonomy in the
blockchain era. In Topics in Cryptology - CT-RSA 2020 - the Cryptogra-
phers’ Track at the RSA Conference 2020, San Francisco, CA, USA,
February 24–28, 2020, Proceedings, pp. 284–318.

263. Mauri, L., Cimato, S., and Damiani, E. (2020). A formal approach for the
analysis of the XRP ledger consensus protocol. In Proceedings of the
6th International Conference on Information Systems Security and Pri-
vacy, ICISSP 2020, Valletta,Malta, February 25–27, 2020 (SCITEPRESS),
pp. 52–63.

264. Libra Association Members (2020). Libra white paper v2.0. https://libra.
org/en-US/white-paper/.

265. Garay, J.A., Kiayias, A., and Leonardos, N. (2015). The bitcoin backbone
protocol: analysis and applications. In Advances in Cryptology - EURO-
CRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26–30,
2015, Proceedings, Part II, pp. 281–310.

266. Pass, R., Seeman, L., and Shelat, A. (2017). Analysis of the blockchain
protocol in asynchronous networks. In Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part II, pp. 643–673.

267. Bitcoin Developer Guide. (2020). Consensus rule changes. https://
bitcoin.org/en/blockchain-guide#consensus-rule-changes.

268. Canetti, R. (2000). Security and composition of multiparty cryptographic
protocols. J. Cryptology 13, 143–202.

269. Morais, E., Koens, T., VanWijk, C., and Koren, A. (2019). A survey on zero
knowledge range proofs and applications. SN Appl. Sci. 1, 946.

270. Sabt, M., Achemlal, M., and Bouabdallah, A. (2015). Trusted execution
environment: what it is, and what it is not. In 2015 IEEE TrustCom/BigDa-
taSE/ISPA, Helsinki, Finland, August 20–22, 2015, 1, pp. 57–64.
Patterns 2, February 12, 2021 51

http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://arxiv.org/abs/1908.03999
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref237
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref237
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref237
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref237
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref238
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref238
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref238
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref238
https://cryptopapers.info/assets/pdf/bulletproofs.pdf
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref242
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref242
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref242
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref242
https://github.com/ElementsProject/lightning
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref245
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref245
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref245
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref245
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref245
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref246
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref246
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref246
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref246
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref247
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref247
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref247
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref247
https://www.jeffcoleman.ca/state-channels/
https://www.jeffcoleman.ca/state-channels/
https://www.ibtimes.co.uk/ethereums-vitalik-buterin-explains-how-state-channels-address-privacy-scalability-1566068
https://www.ibtimes.co.uk/ethereums-vitalik-buterin-explains-how-state-channels-address-privacy-scalability-1566068
https://www.ibtimes.co.uk/ethereums-vitalik-buterin-explains-how-state-channels-address-privacy-scalability-1566068
https://l4.ventures/papers/statechannels.pdf
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/hardening_lightning_updated.pdf
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/hardening_lightning_updated.pdf
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref253
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref253
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref253
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref253
https://www.plasma.io/plasma-deprecated.pdf
https://cosmos.network/whitepaper
https://polkadot.network/PolkaDotPaper.pdf
https://eprint.iacr.org/2019/985
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref258
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref258
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref258
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref258
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref258
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref258
https://eprint.iacr.org/2020/543.pdf
https://eprint.iacr.org/2020/543.pdf
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref260
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref260
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref260
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref260
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref260
https://doi.org/10.6028/NIST.IR.8202
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref262
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref262
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref262
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref262
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref263
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref263
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref263
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref263
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref263
https://libra.org/en-US/white-paper/
https://libra.org/en-US/white-paper/
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref265
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref265
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref265
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref265
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref265
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref266
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref266
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref266
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref266
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref266
https://bitcoin.org/en/blockchain-guide#consensus-rule-changes
https://bitcoin.org/en/blockchain-guide#consensus-rule-changes
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref268
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref268
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref269
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref269
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref270
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref270
http://refhub.elsevier.com/S2666-3899(20)30243-9/sref270

	A comprehensive survey on smart contract construction and execution: paradigms, tools, and systems
	1.1. Methodology
	1.2. Our contributions
	1.3. Organization
	2.1. Background
	2.1.1. Blockchain
	2.1.2. Smart contract
	2.1.2.1. Contract execution in Bitcoin
	2.1.2.2. Contract execution in Ethereum

	2.2. Notations
	2.3. Related work
	2.3.1. Features of platforms
	2.3.2. Properties of contracts
	2.3.3. Analysis tools

	3.1. Construction of smart contracts
	3.2. Execution of smart contracts
	4.1. Design paradigms
	4.1.1. Data storage
	4.1.2. Secure multi-party computation
	4.1.3. Layer-2 protocols
	4.1.4. Scriptless contracts

	4.2. Design tools
	4.2.1. Analysis tools
	4.2.2. Contract languages

	5.1. Design paradigms
	5.1.1. Paradigms for specific applications
	5.1.1.1. Lottery
	5.1.1.2. Loan
	5.1.1.3. Auction
	5.1.1.4. E-government
	5.1.1.5. Off-chain computation and storage

	5.1.2. Paradigms for general purposes
	5.1.2.1. Best practices
	5.1.2.2. Classification and patterns of common contracts
	5.1.2.3. Common vulnerabilities and errors
	5.1.2.4. Design models

	5.2. Design tools
	5.2.1. Analysis tools
	5.2.1.1. Re-entrancy attacks related
	5.2.1.2. Gas consumption related
	5.2.1.3. Trace vulnerability
	5.2.1.4. Event-ordering bugs
	5.2.1.5. Integer bugs
	5.2.1.6. General analysis
	5.2.1.6.1. Symbolic execution
	5.2.1.6.2. Syntactical analysis
	5.2.1.6.3. Abstract interpretation
	5.2.1.6.4. Data-flow analysis
	5.2.1.6.5. Topological analysis
	5.2.1.6.6. Model checking
	5.2.1.6.7. Deductive proof
	5.2.1.6.8. Satisfiability modulo theories
	5.2.1.6.9. Fuzzing test

	5.2.2. Auxiliary tools
	5.2.2.1. Frameworks
	5.2.2.2. Contract languages
	5.2.2.3. Basic tools

	6.1. Private contracts with extra tools
	6.1.1. Secure multi-party computation
	6.1.2. Zero-knowledge proofs
	6.1.3. Trusted execution environment

	6.2. Off-chain channels
	6.2.1. Payment channels
	6.2.1.1. Payment channel networks in Bitcoin
	6.2.1.2. Payment channel networks in Ethereum

	6.2.2. State channels

	6.3. Extensions on core functionalities
	6.3.1. Extension on opcodes
	6.3.2. Improvements on security
	6.3.3. Improvements in efficiency and privacy

	7.1. Comparison with related work
	7.2. Our limitations
	7.3. Challenges
	7.4. Future research directions
	Definition 1 (public blockchain)
	Definition 2 (consortium blockchain)
	Definition 3 (private blockchain)
	Definition 4 (consensus)
	Definition 5 (miner)
	Definition 6 (fork)
	Definition 7 (soft fork)
	Definition 8 (hard fork)

	Definition 9 (transaction)
	Definition 10 (UTXO model)
	Definition 11 (account model)
	Definition 12 (smart contract)
	Definition 13 (security of smart contracts)
	Definition 14 (correctness of smart contracts)
	Definition 15 (secure multi-party computation268)
	Definition 16 (zero-knowledge proof269)
	Definition 17 (trusted execution environment270)
	Acknowledgments
	Author contributions
	References

